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Study systems of interacting particles/agents, in the presence of
noise.

Consider systems for which collective behaviour emerges as the
result of the interaction between agents.

Interpret the emergence of collective behaviour as a disorder/order
phase transition.

Conditions for the existence of phase transitions, calculate
transition points.

Study the effect of colored noise, memory, inertia....

Importance of fluctuations, hydrodynamic/macroscopic limits.

Learn order parameters, predict phase transitions from data.
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Consider systems of interacting diffusions that exhibit phase
transitions in their mean field limit.

Interacting diffusions of this form are used as models for
Synchronization (Kuramoto).
Opinion formation (bounded confidence models,
Hagselmann-Krause).
Systemic risk and cooperation.
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The Kuramoto model: ẋi = − 1
N

∑N
j=1 sin(xi − xj) +

√
2β−1Ẇi.
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Opinion dynamics1

Cooperative dynamics:

dxi,N
t = − 1

N

N∑
j=1

ϕθ(||xi,N
t − xj,N

t ||)(xi,N
t − xj,N

t )dt + σdwi,N
t

Interaction function

ϕθ(r) = θ1 exp
[

− 0.01
1 − (r − θ2)2

]
,

smooth approximation to ϕ̃θ(r) = θ11r∈[0,θ2+1]

1Wang et al. J. Stat. Phys. 2017, Garnier et al Vietn. J. Math. 2017



Opinion dynamics
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Figure: Sample trajectories of the system of interacting particles for
θ2 = {0.0, 0.3, 0.5, 1.0}.

St Entienne, 19 May, 2022 6



Clustering.

Definition of (not physics-informed) order parameter.

Choice of correct boundary conditions, effect of radicals/extreme
groups.2

2Goddard, P. et al IMA J. Appl. Math. 2022St Entienne, 19 May, 2022 7



Cooperative Behaviour/Systemic Risk3

Consider a system of interacting diffusions in a bistable potential:

dXi
t =

−V ′(Xi
t) − θ

Xi
t − 1

N

N∑
j=1

Xj
t

 dt +
√

2β−1 dBi
t.

The total energy (Hamiltonian) is

WN (X) =
N∑
`=1

V (X`) + θ

4N

N∑
n=1

N∑
`=1

(Xn − X`)2.

We can pass rigorously to the mean field limit as N → ∞ using,
for example, martingale ( Oelschlager 1984) or
variational/Γ−convergence techniques (Carrillo, Delgadino, P. J.
Func. Analysis (2020)).

3Dawson J. Stat. Phys. 1983, Garnier et al SIAM Math Finance 2013.



Formally, using the law of large numbers we obtain the McKean
SDE

dXt = −V ′(Xt) dt − θ(Xt − EXt) dt +
√

2β−1 dBt.

The Fokker-Planck equation corresponding to this SDE is the
McKean-Vlasov equation

∂p

∂t
= ∂

∂x

(
V ′(x)p + θ

(
x −

∫
R

xp(x, t) dx

)
p + β−1 ∂p

∂x

)
.

The McKean-Vlasov equation is a gradient flow, with respect to
the Wasserstein metric, for the free energy functional

F [ρ] = β−1
∫

ρ ln ρ dx+
∫

V ρ dx+ θ

2

∫ ∫
F (x−y)ρ(x)ρ(y) dxdy,

with F (x) = 1
2x2.



The finite dimensional dynamics is reversible with respect to the
Gibbs measure

µN (dx) = 1
ZN

e−βWN (x1,...xN ) dx1 . . . dxN , ZN =
∫
RN

e−βWN (x1,...xN ) dx1 . . . dxN

This can be written in the standard form of the Gibbs measure for
an unbounded spin system:

µN (dx) = 1
ZN

e
−θβ

∑
i 6=j

xixj

N∏
j=1

π(dxi),



the McKean dynamics can have more than one invariant measures,
for nonconvex confining potentials and at sufficiently low
temperatures (Dawson 1983, Tamura 1984, Shiino 1987).

The density of the invariant measure(s) for the McKean dynamics
satisfies the stationary nonlinear Fokker-Planck equation

∂

∂x

(
V ′(x)p∞ + θ

(
x −

∫
R

xp∞(x) dx

)
p∞ + β−1 ∂p∞

∂x

)
= 0.

For the quadratic interaction potential a one-parameter family of
solutions to the stationary McKean-Vlasov equation can be
obtained: p∞(x; θ, β, m) = 1

Zθ,β;m
e−β

(
V (x)+θ

(
1
2x

2−xm
))

, Zθ,β;m =∫
R e−β

(
V (x)+θ

(
1
2x

2−xm
))

dx.



These solutions are subject to the constraint that they provide us
with the correct formula for the first moment:

m =
∫
R

xp∞(x; θ, β, m) dx =: R(m; θ, β).

This is the selfconsistency equation:

m = R(m; θ, β).

The critical temperature can be calculated from

Varp∞(x)
∣∣∣
m=0

= 1
βθ

.
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Phase transitions

The number of solutions, and their stability, depends on the
temperature.
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(b) β = 9: m = 0 is unstable.

The slope of m − R(m; β, θ) determines the stability of the steady
states.



Stability of steady states

The stability of the solution can be seen from the associated free
energy:

F [ρ] = β−1
∫

R
ρ(x) ln ρ(x) dx +

∫
R

V (x) ρ(x) dx + θ

2

∫
R

∫
R

F (x − y) ρ(x) ρ(y) dx dy,
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Bifurcation diagram

By solving the self-consistency equation for many values of β (or θ), we
can construct the bifurcation diagram:
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(b) Stability of the “m = 0" solution.



Equations for the moments4

We can obtain an infinite system of equations for the moments of
the McKean-Vlasov PDE:

Ṁk(t) = k
[
(1 − θ)Mk(t) − Mk+2(t) + β−1(k − 1)Mk−2(t)

+ θM1(t)Mk−1(t)
]
.

We truncate the above system, with appropriate boundary
conditions (cumulative moment expansion), and use it to obtain a
low dimensional description of the dynamics close to the phase
transition.

4Lucarini, Zagli, P. 2022



Figure: Approximation of the phase transition using the truncated moments
representation. Left panel: n = 10. Comparison with calculation of 〈Xt〉 using
the time average of the empirical mean over a long trajectory that includes
several transitions between the two metastable states.



Figure: Approximation of the phase transition using the truncated moments
representation for discontinuous phase transitions



Phase transitions for colored noise5

Figure: Bifurcation diagram with scalar OU noise

5S. Gomes, G.P., U. Vaes, SIAM MMS 2020.



The McKean-Vlasov equation on the torus
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Abstract

We study the McKean–Vlasov equation

∂t" = β−1$" + κ ∇·("∇(W & ")),

with periodic boundary conditions on the torus. We first study the global asymp-
totic stability of the homogeneous steady state. We then focus our attention on
the stationary system, and prove the existence of nontrivial solutions branching
from the homogeneous steady state, through possibly infinitely many bifurcations,
under appropriate assumptions on the interaction potential. We also provide suf-
ficient conditions for the existence of continuous and discontinuous phase transi-
tions. Finally, we showcase these results by applying them to several examples of
interaction potentials such as the noisy Kuramoto model for synchronisation, the
Keller–Segel model for bacterial chemotaxis, and the noisy Hegselmann–Krausse
model for opinion dynamics.
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The McKean–Vlasov equation – Setup

Nonlocal parabolic PDE

∂%

∂t
= β−1∆% + κ∇ · (%∇W ? %) in TdL × (0, T ]

with periodic boundary conditions, %(·, 0) = %0 ∈ P(TdL),
TdL=̂

(
−L

2 , L2

)d
%(·, t) ∈ P(TdL) probability density of particles

W coordinate-wise even interaction potential

β > 0 inverse temperature (fixed)

κ > 0 interaction strength (parameter)
St Entienne, 19 May, 2022 21



Example: The noisy Kuramoto model

The Kuramoto model: W (x) = −
√

2
L cos

(
2πk x

L

)
, k ∈ Z
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κ > κc, phase locking
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H-stability

Fourier representation f̃(k) = 〈f, wk〉L2(TL) with k ∈ Zd

A function W ∈ L2(TdL) is H-stable, W ∈ Hs, if

W̃ (k) = 〈W, wk〉 ≥ 0, ∀k ∈ Zd ,

Decomposition of potential W into H-stable and H-unstable part

Ws(x) =
∑
k∈Nd

(〈W, wk〉)+wk(x) and Wu(x) = W (x) − Ws(x) .

St Entienne, 19 May, 2022 23



Functionals for stationary states

Free energy functional Fκ: Driving the W2-gradient flow

Fκ(%) = β−1
∫
Td

L

% log %dx + κ

2

x

Td
L×Td

L

W (x − y)%(x)%(y)dx dy .

Dissipation: Fκ is Lyapunov-function

Jκ(%) = − d

dt
Fκ(%) =

∫
Td

L

|∇ log %

e−βκW?%
|2%dx ,

Kirkwood-Monroe fixed point mapping

Fκ(%) = %−T % = %− 1
Z(%, κ)e−βκW?% , with Z(%, κ) =

∫
Td

L

e−βκW?% dx .

St Entienne, 19 May, 2022 24



Characterization of stationary states: The following are equivalent
% is a stationary state: β−1∆% + κ∇ · (%∇W ? %) = 0.

% is a root of Fκ(%).

% is a global minimizer of Jκ(%).

% is a critical point of Fκ(%).

⇒ %∞ ≡ L−d is a stationary state for all κ > 0.

St Entienne, 19 May, 2022 25



Existence/Uniqueness of Solutions

Theorem

Under appropriate assumptions on the potential, for
%0 ∈ H3+d(U) ∩ Pac(U), there exists a unique classical solution % of the
McKean-Vlasov equation such that %(·, t) ∈ Pac(U) ∩ C2(U) for all
t > 0. Additionally, %(·, t) is strictly positive and has finite entropy, i.e,
%(·, t) > 0 and S(%(·, t)) < ∞, for all t > 0.

St Entienne, 19 May, 2022 26



Exponential stability/convergence in relative entropy

Theorem

(Convergence to equilibrium) Let %(x, t) be a classical solution of the
Mckean–Vlasov equation with smooth initial data and smooth, even,
interaction potential W . Then we have:

1 If 0 < κ < 2π
3βL‖∇W‖∞

, then ‖% − 1
L‖2 → 0, exponentially, as

t → ∞,
2 If Ŵ (k) ≥ 0 for all k ∈ Z or 0 < κ < 2π2

βL2‖∆W‖∞
, then

H
(
%| 1
L

)
→ 0, exponentially, as t → ∞,

where Ŵ (k) represents the Fourier transform and H
(
%| 1
L

)
represents

the relative entropy.
St Entienne, 19 May, 2022 27



Nontrivial solutions to the stationary McKean–Vlasov equation?

W /∈ Hs is a necessary condition for the existence of nontrivial
steady states.

Numerical experiments indicate one, multiple, or possibly infinite
solutions

What determines the number of nontrivial solutions?

Birfurcation analysis of % 7→ Fκ(%).



Example: Kuramoto model: W (x) = −
√

2
L cos(2πx/L)
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Theorem

(Local bifurcations) Let W be smooth and even and let (1/L, κ)
represent the trivial branch of solutions. Then every k∗ ∈ Z, k > 0 such
that

1 card
{

k ∈ Z, k > 0 : Ŵ (k) = Ŵ (k∗)
}

= 1 ,

2 Ŵ (k) < 0,

corresponds to a bifurcation point of the stationary McKean–Vlasov
equation through the formula

κ∗ = −
√

L

βŴ (k∗)
,

with (1/L, κ∗) the bifurcation point.

St Entienne, 19 May, 2022 30



Transition points: Qualitative change of minimizers

Definition (Transition point [Chayes & Panferov ’10])

A parameter value κc > 0 is said to be a transition point of Fκ if it
satisfies the following conditions,

1 For 0 < κ < κc: %∞ is the unique minimiser of Fκ(%)
2 For κ = κc: %∞ is a minimiser of Fκ(%).
3 For κ > κc: ∃%κ 6= %∞, such that %κ is a minimiser of Fκ(%).

St Entienne, 19 May, 2022 31



Definition (Continuous and discontinuous transition point)

A transition point κc > 0 is a continuous transition point of Fκ if

1 For κ = κc: %∞ is the unique minimiser of Fκ(%).
2 For any family of minimizers {%κ 6= %∞}κ>κc it holds

lim sup
κ↓κc

‖%κ − %∞‖1 = 0.

A transition point κc > 0 which is not continuous is discontinuous.

St Entienne, 19 May, 2022 32



Basic properties of transition points

Summary of critical points:

κc transition point.

κ∗ bifurcation point.

κ] point of linear stability, i.e., κ] = − L
d
2

βmink W̃ (k)/Θ(k)
with

k] = arg min W̃ (k).

If there is exactly one k], then κ] = κ∗ is a bifurcation point.

St Entienne, 19 May, 2022 33



Conditions for continuous and discontinous phase transition
Theorem

(Discontinuous and continuous phase transitions) Let W be smooth and
even and assume the free energy Fκ,β exhibits a transition point,
κc < ∞. Then we have the following two scenarios:

1 If there exist strictly positive ka, kb, kc ∈ Z with
Ŵ (ka) = Ŵ (kb) = Ŵ (kc) = mink Ŵ (k) < 0 such that ka = kb + kc

or ka = 2kb, then κc is a discontinuous transition point.
2 Let k] = arg mink Ŵ (k) be well-defined with Ŵ (k]) < 0. Let Wα

denote the potential obtained by multiplying all the negative Ŵ (k)
except Ŵ (k]) by some α ∈ (0, 1]. Then if α is made small enough,
the transition point κc is continuous.

St Entienne, 19 May, 2022 34



β < βc β = βc β > βc

Figure: Continuous vs discontinuous phase transitions. Continuous phase
transition (upper diagram): the unique critical point (shown in blue) loses its
local stability through a local (pitchfork) bifurcation which gives rise to new
locally stable critical points. Discontinuous phase transition (lower diagram):
the unique critical point retains its local stability but new critical points arise
in the free energy landscape through a saddle node bifurcation.



The generalized Kuramoto model

Proposition

The generalised Kuramoto model W (x) = −wk(x), for some
k ∈ N, k 6= 0 exhibits a continuous transition point at κc = κ].
Additionally, for κ > κc, the equation F (%, κ) = 0 has only two
solutions in L2(U) (up to translations). The nontrivial one, %κ

minimises Fκ for κ > κc and converges in the narrow topology as
κ → ∞ to a normalised linear sum of equally weighted Dirac measures
centred at the minima of W (x).

St Entienne, 19 May, 2022 36



The noisy Hegselmann–Krause model for opinion dynamics

The noisy Hegselmann–Krause system models the opinions of N

interacting agents such that each agent is only influenced by the
opinions of its immediate neighbours. The interaction potential is

Whk(x) = −1
2

((
|x| − R

2

)
−

)2

for some R > 0. The ratio R/L measures the range of influence of
an individual agent with R/L = 1 representing full influence.



The noisy Hegselmann–Krause model for opinion dynamics

The Fourier transform of Whk(x) is

W̃hk(k) =
(
−π2k2R2 + 2L2) sin

(
πkR
L

)
− 2πkLR cos

(
πkR
L

)
4
√

2π3k3
√

1
L

,

with k ∈ N, k 6= 0.

the model has infinitely many bifurcation points for R/L = 1.



We define a rescaled version of the potential

WR
hk(x) = − 1

2R3

((
|x| − R

2

)
−

)2

,

which does not lose mass as R → 0.

Proposition

For R small enough, the rescaled noisy Hegselmann–Krause model
possesses a discontinuous transition point.



Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-021-01648-1
Arch. Rational Mech. Anal.

On the Diffusive-Mean Field Limit for Weakly
Interacting Diffusions Exhibiting Phase

Transitions

Matias G. Delgadino , Rishabh S. Gvalani & Grigorios A.
Pavliotis

Communicated by P.-L. Lions

Abstract

The objective of this article is to analyse the statistical behaviour of a large
number of weakly interacting diffusion processes evolving under the influence of a
periodic interaction potential. We focus our attention on the combined mean field
and diffusive (homogenisation) limits. In particular, we show that these two limits
do not commute if the mean field system constrained to the torus undergoes a
phase transition, that is to say, if it admits more than one steady state. A typical
example of such a system on the torus is given by the noisy Kuramoto model of
mean field plane rotators. As a by-product of our main results, we also analyse
the energetic consequences of the central limit theorem for fluctuations around the
mean field limit and derive optimal rates of convergence in relative entropy of the
Gibbs measure to the (unique) limit of the mean field energy below the critical
temperature.
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The joint diffusive-mean field limit

We consider the following system of weakly interacting diffusions with a periodic
interaction potential:

dXi,ε
t = −∇V (ε−1Xi,ε

t ) dt − 1
N

N∑
i 6=j

∇W (ε−1(Xi,ε
t − Xj,ε

t )) dt +
√

2β−1 dBi
t

with W, V chosen to be 1-periodic.

Let ρε,N = Law(X1,ε
t , . . . , XN,ε

t ) and consider the diffusive rescaling

ρε,N (x, t) := ε−NdνN (ε−1x, ε−2t) ∈ P((Rd)N ) .

Interpretation: zooming out in space and looking at sufficiently long (diffusive)
times.

Can pass to the limit:

Bensoussan–Lions–Papanicolaou (1978), P.-Stuart (2008) (PDE approach)
Kipnis–Varadhan 1986 (Probabilistic approach)



The 1d problem (Freidlin, Lifson-Jackson, 1962)
Consider a single particle moving in a periodic potential

dXt = − sin(Xt) dt +
√

2β−1 dWt

From the martingale central limit theorem it follows that the
rescaled process converges weakly to a Brownian motion

εXt/ε2 →
√

2Dβ Wt

where Dβ = β−1

Z+ Z−
, Z± = 1

2π
∫ 2π

0 e∓ cos(x) dx.

This formula was obtained by Lifson-Jackson (J. Chem. Phys.,
1962) by doing a mean exit time calculation.
Similar result in the multidimensional case. Upper and lower
bounds on the covariance matrix of the effective Brownian motion
β−1

Z+ Z−
‖ξ‖2 ≤ 〈Dβξ, ξ〉 ≤ β−1‖ξ‖2, ∀ ξ ∈ Rd.



The quotiented N -particle system

dẊi
t = −∇V (Ẋi

t) dt − 1
N

N∑
i 6=j

∇W (Ẋi
t − Ẋj

t ) dt +
√

2β−1 dḂi
t ,

Ẋi
t ∈ Td and Ḃi

t are Td-valued Wiener processes.

This is a reversible process with respect to the N -particle Gibbs measure

MN (x) = e−HN (x)∫
TdN

e−HN (y) dy
,

and the law ν̃N evolves according to{
∂tν̃

N = β−1∆ν̃N + ∇ · (∇HN ν̃N ), (t, x) ∈ (0, ∞) × (Td)N

ν̃N (0) =ν̃N
0 :=

∑
k∈Zd νN

0 (k + x) ∈ P((Td)N )

Periodic rearrangement of νN .
St Entienne, 19 May, 2022 43



Theorem (The diffusive limit)

ρN,∗ = lim
ε→0

ρε,N

exists (with convergence in weak-?) and satisfies

∂tρ
N,∗ = ∇ · (Aeff,N ∇ρN,∗),

where the diffusion matrix is given by

Aeff,N =
∫

TN

(I + ∇ΨN (y)) MN (y) dy

with MN the invariant measure of the quotiented process on the torus, and ΨN the
solution of the corrector problem

∇ · (∇ΨN MN ) = −∇MN , x ∈ TN .

The diffusive limit is affected by the problem on the torus, that exhibits phase
transitions in the mean field limit.

Question: limN→∞ ρN,∗ =?.



Question: do the mean field and homogenization limits commute?

ρε,N ρN,∗

ε → 0

ρε,⊗N
N → ∞

?
N → ∞

ε → 0



Theorem (Delgadino–Gvalani–P. ’21)

Let Fβ be the free energy on the torus and assume it exhibits a phase
transition at some β = βc. Then for β < βc

lim
N→∞

lim
ε→0

ρε,N = lim
ε→0

lim
N→∞

ρε,N .

On the other hand if β > βc, there exists initial data ρ⊗N
0 such that

lim
N→∞

lim
ε→0

ρε,N 6= lim
ε→0

lim
N→∞

ρε,N .
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Consider the quotiented Kuramoto model with a confining potential
V (x) = cos(2πx). Then there exists a β = βc such that:

For β < βc, there exists a unique steady state given by

ν̃min(x) = Z−1
mineamin cos(2πx) , Zmin =

∫
T

eamin cos(2πx) dx ,

for some amin = amin(β), amin > 0, which is the unique minimiser of the
periodic mean field energy ẼMF .

For β > βc, there exist at least 2 steady states given by

ν̃min(x) = Z−1
mineamin cos(2πx) , Zmin =

∫
T

eamin cos(2πx) dx ,

ν̃∗(x) = Z−1
∗ ea∗ cos(2πx) , Z−1

∗ =
∫

T
ea∗ cos(2πx) dx ,

where a∗ < 0 < amin and both constants depend on β. Here ν̃min is the
unique minimiser and ν̃∗ is a non-minimising critical points of the
periodic mean field energy ẼMF . Moreover, a∗ 6= −amin.
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Figure: amin (solid line) and a∗ (dotted line) for η = 0.5. The two effective
diffusion coefficients are Aeff

∗ = β−1

I0(−a∗)2 and Aeff
min = β−1

I0(amin)2 .



Sketch of proof for N → ∞ followed by ε → 0

Pass to the mean field limit to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector
problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t) − V ))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm
2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent
version of the martingale CLT.

Pass to the limit as ε → 0.



Sketch of proof for ε → 0 followed by N → ∞
Need to pass to the limit in the diffusion matrix Aeff,N:

Aeff,N = β−1
∫

(Td)N

(I + ∇ΨN (y)) MN (y) dy .

Key idea MN ≈ MN−1(MN )1 as N → ∞ + natural uniform in N estimate on
ΨN : ∫

(Td)N

(I + ∇ΨN (y)) (MN − MN−1(MN )1) dy

=
∫

(Td)N

(I + ∇ΨN (y))
(

MN

MN−1
− (MN )1

)
MN−1 dy

≤
∥∥I + ∇ΨN

∥∥
L2(MN−1)

∥∥∥∥( MN

MN−1
− (MN )1

)∥∥∥∥
L2(MN−1)

.

The function MN /(MN−1) is symmetric in all but one of its variables. Use
techniques due to Lions pass to N → ∞ on C(P(Td)). Similarly pass to
N → ∞ to obtain MN−1 → δ

ν̃min ∈ P(P(T)d).

Enough information to pass to the limit in the PDE.



Consider the fluctuations around the mean field for the Kuramoto
model GN :=

√
N
(

1
N

∑N
i=1 δxi − ν̃min

)
. We have that GN converges in

law to G∞ whose law is the unique invariant measure of the following
linear stochastic PDE

dG∞ =
(
β−1∂xxG∞ + (2π)2 cos(2πx) ∗ G∞

)
dt +

√
2β−1dξ,

where ξ(t, x) =
∑
k∈Z 2πkek(x)Ḃk(t). We can find the invariant

measure explicitly for each mode

Law(〈G∞, ek〉) =

N
(
0, 2

2−β

)
|k|=1

N (0, 1) |k|6=1,

We can clearly identify the phase transition βc = 2 when the SPDE no
longer supports an invariant measure.
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PHASE TRANSITIONS, LOGARITHMIC SOBOLEV INEQUALITIES, AND
UNIFORM-IN-TIME PROPAGATION OF CHAOS FOR WEAKLY

INTERACTING DIFFUSIONS

BY MATÍAS G. DELGADINO1, RISHABH S. GVALANI2 , GRIGORIOS A.
PAVLIOTIS3 AND SCOTT A. SMITH4

1Department of Mathematics, The University of Texas at Austin matias.delgadino@math.utexas.edu
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3Department of Mathematics, Imperial College London g.pavliotis@imperial.ac.uk

4Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences ssmith@amss.ac.cn

Abstract In this article, we study the mean field limit of weakly interacting diffusions for
confining and interaction potentials that are not necessarily convex. We explore the relation-
ship between the large N limit of the constant in the logarithmic Sobolev inequality (LSI)
for the N -particle system and the presence or absence of phase transitions for the mean field
limit. The non-degeneracy of the LSI constant is shown to have far reaching consequences,
especially in the context of uniform-in-time propagation of chaos and the behaviour of equi-
librium fluctuations. Our results extend previous results related to unbounded spin systems
and recent results on propagation of chaos using novel coupling methods. As incidentals,
we provide concise and, to our knowledge, new proofs of a generalised form of Talagrand’s
inequality and of quantitative propagation of chaos by employing techniques from the theory
of gradient flows, specifically the Riemannian calculus on the space of probability measures.

1. Introduction. Interacting particle systems have attracted a lot of attention in recent
years since they appear in diverse areas ranging from plasma physics and galactic dynamics
to machine learning and optimization. For systems of identical (or exchangeable) particles
in which the pair-wise interactions scale like the inverse of the number of particles, it is
possible to pass to the mean field limit and obtain a coarse-grained description of the system
via a nonlinear nonlocal PDE that governs the evolution of the one-particle density. In this
paper, we consider systems of weakly interacting diffusions driven by pair-wise interactions,
confinement and independent Brownian motions (see (2.1) ). In this case the mean field PDE
is the so-called McKean–Vlasov equation.

A natural problem that one would like to address is how to obtain sharp quantitative esti-
mates on the rate at which the empirical measure of the particle system converges to the mean
field limit, as the number of particles N goes to infinity. When considering arbitrarily long
time scales, this problem is intimately connected to the rate of convergence to steady states
as time t goes to infinity. For the study of such quantitative results, a crucial role is played
by the Poincaré (PI) and logarithmic Sobolev (LSI) inequalities. Our focus in this paper is
to elucidate the connection between the validity of the LSI for the N -particle Gibbs measure
uniformly in the number of particles N and the properties of the mean field limit. We es-
tablish connections with uniform-in-time propagation of chaos, (non-)uniqueness of steady
states of the mean field equation, exponential convergence to equilibrium, and the behaviour

MSC2020 subject classifications: Primary 60K35, 82B26; secondary 39B62.
Keywords and phrases: Interacting particle systems, log Sobolev inequalities, phase transitions, propagation

of chaos.

1
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We consider {Xi
t}i=1,...,N ⊂ Rd, the positions of N indistinguishable

interacting particles at time t ≥ 0, satisfying the following system of
SDEs:

dXi
t = −∇V (Xi

t) dt − 1
N

N∑
j=1

∇1W (Xi
t , Xj

t ) dt +
√

2β−1dBi
t

Law(X1
0 , . . . , XN

0 ) = ρ⊗N
in ∈ P2,sym((Rd)N ),

(0.1)

where V : Rd → R, W : Rd ×Rd → R, β−1 > 0 is the inverse
temperature, Bi

t, i = 1, . . . , N are independent d-dimensional Brownian
motions, and the initial position of the particles is i.i.d with law ρin.



Assumption

The confining potential V is lower semicontinuous, bounded below,
KV -convex for some KV ∈ R and there exists R0 > 0 and δ > 0, such
that V (x) ≥ |x|δ for |x| > R0. The interaction potential W is lower
semicontinuous, KW -convex for some KW ∈ R, bounded below,
symmetric W (x, y) = W (y, x), vanishes along the diagonal
W (x, x) = 0, and there exists C such that

|∇1W (x, y)| ≤ C(1 + |W (x, y)| + V (x) + V (y))



Given ρ(t), the solution to the McKean-Vlasov PDE, we
differentiate to obtain the dissipation

d

dt
EMF [ρ(t)]−inf EMF = −

∫
Ω

|β−1∇ log ρ(t)+∇W?ρ(t)+∇V |2ρ(t) dx =: −D(ρ(t)).

We have exponentially fast convergence provided that the infinite
volume log Sobolev constant

0 < λ∞
LSI := inf

ρ∈P(Ω)
ρ/∈K

D(ρ)
EMF [ρ(t)] − inf EMF

,

is positive, where

K = {ρ ∈ P(Ω) : EMF [ρ] = inf EMF }.



Theorem

Under the above Assumption, we have

lim sup
N→∞

λNLSI ≤ λ∞
LSI.

Moreover, if the mean field energy EMF : P(Ω) → R ∪ {+∞} given by

EMF [ρ] := β−1
∫

Ω
ρ log(ρ) dx+1

2

∫
Ω2

W (x, y) dρ(x) dρ(y)+
∫

Ω
V (x) dρ(x) ,

admits a critical point that is not a minimiser, then λ∞
LSI = 0, and there

exists C > 0 such that
λNLSI ≤ C

N
.



When λ∞
LSI > 0, we can show that the regularized log Sobolev constant

λN,εLSI := inf
ρN : E(ρN |MN )>ε

β−1I(ρN |MN )
E(ρN |MN )

does not degenerate:

lim
N→∞

λN,εLSI ≥ λ∞
LSI > 0.

Theorem

Under the above assumption, assume that λ∞
LSI > 0, and that ρin

in (0.1) has finite energy and bounded higher order moments,

EMF [ρin] < ∞ and
∫

Ω
|x|2+δ dρin < ∞, for some δ > 0.

Then, for every ε > 0, there exists N0 ∈ N, such that for every N > N0

we have

E(ρN (t)|MN ) ≤ max
{

ε, e− 1
2λ

∞
LSIt E(ρ⊗N

in |MN )
}

.



We are not able to fully characterise the limit of λNLSI in terms of
the mean field limit. We formulate the following conjecture.

Under the above assumptions, we have the equality

lim
N→∞

λN
LSI = λ∞

LSI.

These results suggest that:
(a) the absence of phase transitions
(b) the non-degeneracy of the infinite volume log Sobolev constant
(c) the validity uniform-in-time propagation of chaos

are all equivalent



Theorem

Under the above Assumption, assume that lim supN→∞ λNLSI > 0. Then,
there exists a unique steady state ρβ to the McKean-Vlasov PDE.
Moreover, there exists C > 0, such that

d
2
2(ρ⊗N

β , MN ) ≤ 2
λNLSI

E(ρ⊗N
β |MN ) ≤ 2

(λNLSI)2 I(ρ⊗N
β |MN ) ≤ C

N
.



Theorem

Under the above assumption, let ρN and ρ denote the unique solutions
to the particle and mean field dynamics. Assume that ρin has finite
energy EMF [ρin] < ∞ , that the gradient of the square of the interaction
potential is uniformly integrable
supt∈[0,∞]

∫
Ω |∇1W |2 ? ρ(t)ρ(t) dx < ∞ , and that

lim infN→∞ λNLSI =: λ∞ > 0. Then,
d2(ρN (t), ρ⊗N (t)) ≤ C

Nθ for all t > 0, where

θ =

 1/2 if KV + KW > 0
1
2

λ∞

λ∞−2(KV +KW ) if KV + KW < 0

with KV and KW the convexity constants of V and W in A1,A2. In
the case where KV + KW (1 − 1/N) = 0, we can pick any θ < 1/2.



Inference for the McKean-SDE

Parameter Estimation for the McKean-Vlasov Stochastic Di↵erential Equation ⇤

L. Sharrock
†
, N. Kantas

†
, P. Parpas

‡‡
, and G.A. Pavliotis

†

Abstract. We consider the problem of parameter estimation for a stochastic McKean-Vlasov equation, and
the associated system of weakly interacting particles. We first establish consistency and asymptotic
normality of the o✏ine maximum likelihood estimator for the interacting particle system in the limit
as the number of particles N ! 1. We then propose an online estimator for the parameters of
the McKean-Vlasov SDE, which evolves according to a continuous-time stochastic gradient descent
algorithm on the asymptotic log-likelihood of the interacting particle system. We prove that this
estimator converges in L1 to the stationary points of the asymptotic log-likelihood of the McKean-
Vlasov SDE in the joint limit as N ! 1 and t ! 1, under suitable conditions which guarantee
ergodicity and uniform-in-time propagation of chaos. We then demonstrate, under the additional
condition of global strong concavity, that our estimator converges in L2 to the unique maximiser of
this asymptotic log-likelihood function, and establish an L2 convergence rate. We also obtain analo-
gous results under the condition that, rather than observing multiple trajectories of the interacting
particle system, we instead observe multiple independent replicates of the McKean-Vlasov SDE itself
or, less realistically, a single sample path of the McKean-Vlasov SDE and its law. Our theoretical
results are demonstrated via two numerical examples, a linear mean field model and a stochastic
opinion dynamics model.

Key words. McKean-Vlasov equation, nonlinear di↵usion, maximum likelihood, parameter estimation, consis-
tency, asymptotic normality, stochastic gradient descent

AMS subject classifications. 60F05, 60F25, 60H10, 62F12

1. Introduction. In this paper, we consider a family of McKean-Vlasov stochastic di↵er-
ential equations (SDEs) on Rd, parametrised by ✓ 2 Rp, of the form

dx✓t = B(✓, x✓t , µ
✓
t )dt+ �(x✓t )dwt, t � 0(1.1)

µ
✓
t = L(x✓t ),(1.2)

where B : Rp
⇥ Rd

⇥ P(Rd) ! Rd, � : Rd
! Rd⇥d are Borel measurable functions, (wt)t�0 is

a Rd-valued standard Brownian motion, and L(x✓t ) denotes the law of of x✓t . We assume that
x0 2 Rd, or that x0 is a Rd-valued random variable with law µ0, independent of (wt)t�0. This
equation is non-linear in the sense of McKean [60, 61, 79]; in particular, the coe�cients depend
on the law of the solution, in addition to the solution itself. We will restrict our attention to
the case in which the dependence on the law only enters linearly in the drift, namely, that

(1.3) B(✓, x, µ) = b(✓, x) +

Z

Rd
�(✓, x, y)µ(dy),

⇤Funding: The first author was funded by the EPRSC CDT in the Mathematics of Planet Earth (grant number
EP/L016613/1) and the National Physical Laboratory. The second, third, and fourth authors were partially funded
under a J.P. Morgan A.I. Research Award (2022). The fourth author was partially supported by the EPSRC (grant
number EP/P031587/1).

†Department of Mathematics, Imperial College London, South Kensington, London, SW7 2AZ, UK
(louis.sharrock16@imperial.ac.uk, n.kantas@imperial.ac.uk, g.pavliotis@imperial.ac.uk)

‡Department of Computing, Imperial College London, South Kensington, London, SW7 2AZ, UK
(panos.parpas@imperial.ac.uk)
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Eigenfunction martingale estimators for interacting particle
systems and their mean field limit

Grigorios A. Pavliotis � Andrea Zanoni †

Abstract

We study the problem of parameter estimation for large exchangeable interacting
particle systems when a sample of discrete observations from a single particle is known.
We propose a novel method based on martingale estimating functions constructed by
employing the eigenvalues and eigenfunctions of the generator of the mean field limit,
linearized around the (unique) invariant measure of the mean field dynamics. We
then prove that our estimator is asymptotically unbiased and asymptotically normal
when the number of observations and the number of particles tend to infinity, and we
provide a rate of convergence towards the exact value of the parameters. Finally, we
present several numerical experiments which show the accuracy of our estimator and
corroborate our theoretical findings, even in the case the mean field dynamics exhibit
more than one steady states.

AMS subject classifications. 35Q70, 35Q83, 60J60, 62M15, 65C30.

Key words. Interacting particle systems, exchangeability, mean field limit, inference,
Fokker–Planck operator, eigenvalue problem, martingale estimators.

1 Introduction

Interacting particle systems and, more generally interacting multiagent models, appear
frequently in the natural and social sciences. In addition to the well known applications, e.g.,
plasma physics [22] and stellar dynamics [7], new applications include, e.g., the modeling
of chemotaxis [40], pedestrian dynamics [24, 30], crowd dynamics [32], urban modeling [14],
models for opinion formation [18, 21], collective behavior [11], and models for systemic
risk [20]. In many of these applications, the phenomenological models involve unknown
parameters that need to be estimated from data. This is particularly the case for multiagent
models used in the social sciences and in economics, where no physics-informed choices
of parameters are available. Learning parameters or even models, in a nonparametric
setting, from data is becoming an increasingly important aspect of the overall mathematical
modeling strategy. This is particularly the case in view of the huge quantity of available
data in di�erent areas, which allows the development of accurate data-driven techniques
for learning parameters from data.

�Department of Mathematics, Imperial College London, London SW7 2AZ, UK,
g.pavliotis@imperial.ac.uk

†Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland,
andrea.zanoni@epfl.ch
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Data generation process

Three cases for model hypothesis. We observe data as either:

1 N dependent paths generated from IPS,
{

(xθ∗,i
s )s∈[0,t]

}N

i=1

2 N independent paths generated from McKean SDE,
{

(xθ∗,[i]
s )s∈[0,t]

}N

i=1

3 A single path from McKean SDE and the full evolution uθ∗
t (x) of the density

for all x

Case 3 not practically relevant - almost standard SDE estimation case

In each case we wish to estimate true parameter θ∗ used to generate the data



Data generation process
θ∗ is true parameter. Data can be generated by different models.
Cases for s ∈ [0, t]:

1 Paths of particles of IPS:

dxθ∗,i,N
s = B(θ∗, xθ∗,i,N

s , µθ,N
s )ds + σdwi,N

s

2 N independent paths of McKean SDE:

dxθ∗,[i]
s = B(θ∗, xθ∗,[i]

s , µθ
s)ds + σdw[i]

s

3 One path of McKean SDE and the full evolution of the density for all x:

dxθ∗
s = B(θ∗, xθ∗

s , uθ
s)ds + σdws

∂suθ∗
s (x) = ∇

[1
2σσT ∇uθ∗

s (x) + uθ∗
s (x)B(θ∗, x, uθ

s)
]

Notation:
B(θ, x, µ) = b(θ, x) +

∫
Rd

φ(θ, x, y)µ(dy)



Parameter estimation using likelihood inference

Ideal Girsanov likelihood for McKean SDE

Lt(θ; X) = log dPθ
t

dPθ∗
t

(X)

=
∫ t

0
L(θ, xs, µs)ds +

∫ t

0
〈G(θ, xs, µs), dws〉.

with

B(θ, x, µ) = b(θ, x) +
∫

Rd

φ(θ, x, y)µ(dy)

G(θ, x, µ) = B(θ, x, µ) − B(θ∗, x, µ)

L(θ, x, µ) = −1
2 ||G(θ, x, µ)||2



Likelihood approximations and ML estimation
Cases 1-2 require particle approximations:

LN
t (θ) = 1

N

N∑
i=1

[∫ t

0
L(θ, xi,N

s , µN
s )ds +

∫ t

0

〈
G(θ, xi,N

s , µN
s ), dwi,N

s

〉
︸ ︷︷ ︸

=Li,N
t

(θ)

]
,

with

µN
t = 1

N

N∑
j=1

δ
x

j,N
t

Resulting approximate MLE:

θ̂N
t = arg sup

θ∈Rp
LN

t (θ).

Case 3 no need for approximation

θ̂t = arg sup
θ∈Rp

Lt(θ).



MLE convergence: the offline case

Offline MLE:

observations after a fixed time interval [0, t] :
{

(xi
s)s∈[0,t]

}N

i=1
(dropping θ∗ superscripts above)

estimate θ∗ using θ̂t or θ̂N
t

There are different asymptotic regimes
t → ∞: θ̂t well understood [Levanony et al 94, Wen et al 16] resp.
N → ∞: (fixed t) previously established with linear parametrisation in θ

[Kasonga 90]

Weak consistency and asymptotic normality holds



Offline parameter estimation - convergence

Theorem

Under the above and some more identifiability assumptions, let Θ ⊆ Rp be a compact
set and θ∗ ∈ Θ. Then for any fixed t as N → ∞, we have

θ̂N
t

P−→ θ∗

and
N

1
2 (θ̂N

t − θ∗) D−→ N (0, I−1
t (θ∗))

with

[It(θ∗)]kl =
∫ t

0

∫
Rd

[∇θB(θ∗, x, µs)]k[∇θB(θ∗, x, µs)]lµs(dx)ds.



Bistable Potential: Offline MLE
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Figure: Log-log plot of the L1 error of the offline MLE for t = 0.5 and
N ∈ {20, . . . , 200} (left hand panel), and for t ∈ [100, 1000] and N = 2 (right
hand panel).



Online parameter estimation
Ideal approach (case 3):

seek to maximise ergodic likelihood

L̃(θ) = lim
t→∞

1
t

Lt(θ)

= −1
2

∫
Rd

||B(θ, x, µ∞) − B(θ∗, x, µ∞)||2µ∞(dx).

use stochastic gradient descent

dθt = γt

(
∇θL(θt, xt, µt)dt︸ ︷︷ ︸
(noisy) ascent term

+ ∇θB(θt, xt, µt)dwt︸ ︷︷ ︸
noise term

)

with γt decreasing step size

A more clear view

dθt = γt( ∇θL̃(θt)dt︸ ︷︷ ︸
(true) ascent term

+ (∇θL(θt, xt, µt) − ∇θL̃(θt))dt︸ ︷︷ ︸
fluctuations term

+ ∇θB(θt, xt, µt)dwt︸ ︷︷ ︸
noise term

)



Online parameter estimation

Implementable approach uses particle approximations for likelihood terms:

L̃i,N (θ) = lim
t→∞

1
t

Li,N
t (θ) or L̃N (θ) = lim

t→∞

1
t

LN
t (θ).

At each particle use:

dθi,N
t = γt

[
∇θL(θi,N

t , xi,N
t , µN

t )dt + ∇θB(θi,N
t , xi,N

t , µN
t )dwi

t

]
and average

θN
t = 1

N

N∑
i=1

θi,N
t .

Cases 1 and 2 are identical up to specification of the data.



Online parameter estimation convergence

Theorem

Under assumptions above and some more, we have in L1 (for both Cases 1,2)

lim
N→∞

lim
t→∞

||∇θL̃(θN
t )|| = 0,

lim
N→∞

lim
t→∞

||∇θL̃(θi,N
t )|| = 0,

and for Case 3
lim

t→∞
||∇θL̃(θt)|| = 0,

For Case 1 if N is finite:

lim
t→∞

||∇θL̃i,N (θi,N
t )|| = lim

t→∞
||∇θL̃N (θN

t )|| = 0



Online ML numerical results - opinion dynamics
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Figure: Independent runs of parameter estimates for the range parameter θ2,
θ2(0) ∼ U([1.5, 2.5]), and N = {10, 20, 50} (left to right). Top: typical saple data
trajectories with θ∗

2 = 0.5.



Online ML numerical results - opinion dynamics
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Figure: Sequence on online parameter estimates for two range parameters θ2,1
(blue) and θ2,2 (orange); interaction is a smooth approximation to
ϕ̃θ(r) =

∑p
i=1 θ1,i1r∈[0,θ2,i].



Martingale Eigenfunction Estimator

Consider a large system of N interacting particles (n = 1, . . . , N)

dX
(n)
t = −V ′(X(n)

t ; α) dt − κ
(
X

(n)
t − X̄N

t︸︷︷︸
1
N

∑N

n=1 X
(n)
t

)
dt +

√
2σ dW

(n)
t

If N → ∞ =⇒ mean field limit (nonlinear SDE)

dXt = −V ′(Xt; α) dt − κ
(
Xt − mt︸︷︷︸

E[Xt]

)
dt +

√
2σ dWt

which can have multiple invariant measures

Goal: estimate unknown parameter θ = (α, κ, σ) given M + 1 discrete
observations of one single particle {X

(n∗)
m∆ }Mm=0



Methodology

Idea: employ martingale estimating functions based on eigenvalues and
eigenfunctions of the generator of the mean field dynamics

Ltu(x) = −
(
V ′(x; α) + κ(x − mt)

)
u′(x) + σu′′(x)

Issue: the generator is time-dependent =⇒ replace mt with the
expectation m w.r.t. the “right” invariant measure ρ

Lu(x) = −
(
V ′(x; α) + κ(x − m︸︷︷︸

Eρ[X]

)
)
u′(x) + σu′′(x)

Procedure:

Compute the first J eigenpairs −Lφj(x; θ) = λj(θ)φj(x; θ)
Construct the martingale estimating function GJ

M,N (θ)
Solve the nonlinear system GJ

M,N (θ) = 0 =⇒ θ̂JM,N



Algorithm

Input: Observations {X(n∗)
m∆ }M

m=0
Distance between two consecutive observations ∆
Number of eigenvalues and eigenfunctions J
Smooth functions {ψj(x; θ)}J

j=1
Confining potential V

Output: Estimation θ̂J
M,N of θ

1: Find the invariant measure ρ and compute m

2: Consider the equation σφ′′(x; θ) − (V ′(x;α) + κ(x−m))φ′(x; θ) + λ(θ)φ(x; θ) = 0

3: Compute the first J eigenvalues {λj(θ)}J
j=1 and eigenfunctions {φj(·; θ)}J

j=1

4: Construct the function gj(x, y; θ) = ψj(x; θ)
(
φj(y; θ) − e−λj (θ)∆φj(x; θ)

)
5: Construct the score function GJ

M,N (θ) = 1
M

∑M−1
m=0

∑J

j=1 gj(X̃(n)
m , X̃

(n)
m+1; θ)

6: Let θ̂J
M,N be the solution of the nonlinear system GJ

M,N (θ) = 0



Convergence analysis

Asymptotic unbiasedness:

if M = o(N) then θ̂JM,N → θ

in probability as M, N → ∞

Rate of convergence: 1√
M

+ 1√
N

Asymptotic normality:

if M = o(
√

N) then
√

M(θ̂JM,N − θ) → N (0, ΓJ)

in distribution as M, N → ∞



Numerical experiments
Consider the double well potential V (x; α) = α ·

(
x4

4 −x2

2
)>

Issue: phase transition occurs

Plots below the phase transition:

M = 2000



Numerical experiments
Consider the double well potential V (x; α) = α ·
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Numerical experiments
Consider the nonsymmetric potential V (x; α) = α ·

(
x4

4
x2

2 x
)> Issue:

invariant measures around each critical point of the potential

α1 α2 α3

α3

α2

α1


