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e Study systems of interacting particles/agents, in the presence of

noise.

e Consider systems for which collective behaviour emerges as the

result of the interaction between agents.

o Interpret the emergence of collective behaviour as a disorder/order

phase transition.

e Conditions for the existence of phase transitions, calculate

transition points.
e Study the effect of colored noise, memory, inertia....
e Importance of fluctuations, hydrodynamic/macroscopic limits.

o Learn order parameters, predict phase transitions from data.
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o Consider systems of interacting diffusions that exhibit phase

transitions in their mean field limit.

o Interacting diffusions of this form are used as models for
e Synchronization (Kuramoto).
o Opinion formation (bounded confidence models,
Hagselmann-Krause).

e Systemic risk and cooperation.

St Entienne, 19 May, 2022
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Opinion dynamics’

@ Cooperative dynamics:

N
i N 1 PN i, N i, N i, N i\N
dep™ = = eo(llzy™ — M)y — @ ™)dt + oduw,
j=1

@ Interaction function

po(r) =01 exp {—1_80_102)2] ,

smooth approximation to @g(r) = 011,¢[0,6,+1]

!"'Wang et al. J. Stat. Phys. 2017, Garnier et al Vietn. J. Math. 2017
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Figure: Sample trajectories of the system of interacting particles for
62 ={0.0,0.3,0.5,1.0}.
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@ Clustering.
@ Definition of (not physics-informed) order parameter.

@ Choice of correct boundary conditions, effect of radicals/extreme

groups.?

2 Aoddard, Pret Al TMA J. Appl. Math. 2022



Cooperative Behaviour/Systemic Risk®

o Consider a system of interacting diffusions in a bistable potential:

. . A A ;
dX; = (—V’(XZ)—H (XZ—NZXf)) dt+\/25id3§'

j=1
@ The total energy (Hamiltonian) is

N , g NN ,
Wi (X) = XH+ — m— X52
V(X) = Y VXY + 5 30 (X - X
=1 n=1/=1
@ We can pass rigorously to the mean field limit as N — oo using,
for example, martingale ( Oelschlager 1984) or

variational /I'—convergence techniques (Carrillo, Delgadino, P. J.

Func. Analysis (2020)).

3Dawson J. Stat. Phys. 1983, Garnier et al SIAM Math Finance 2013.



o Formally, using the law of large numbers we obtain the McKean
SDE

dX; = —V/(Xt) dt — H(Xt — EXt) dt + 2571 dB;.

o The Fokker-Planck equation corresponding to this SDE is the

McKean-Vlasov equation

g’t’ = aax <V’(:c)p+ 0 (x — /R:cp(x,t) d:c) p+ 6‘1g§) :

@ The McKean-Vlasov equation is a gradient flow, with respect to

the Wasserstein metric, for the free energy functional

Flol Zﬁ‘lfplnpdwwL/Vpdeg//F(:v—y)p(w)p(y) ddy,

with F(z) = 322



@ The finite dimensional dynamics is reversible with respect to the

Gibbs measure

UN(dCU) — ie*/BWN(xl,...xN) dl‘l o de7 In = / efﬁWN(Il,..-xN)‘
N RN

o This can be written in the standard form of the Gibbs measure for

an unbounded spin system:

) N
pn (dx) = Zie_%z#j o w(des),

N i1



the McKean dynamics can have more than one invariant measures,
for nonconvex confining potentials and at sufficiently low
temperatures (Dawson 1983, Tamura 1984, Shiino 1987).

The density of the invariant measure(s) for the McKean dynamics

satisfies the stationary nonlinear Fokker-Planck equation

aﬁx <V/($)Poo +0 <:c - /Rxpoo(x) dx> Poo + 5168111‘;0) —0.

For the quadratic interaction potential a one-parameter family of

solutions to the stationary McKean-Vlasov equation can be
LBV @)r0 (327 —am))
0,8;m

obtained: poo(x;0,8,m) =
Jr eiﬁ(v(x)w(%xkxm)) dz.

2y, gim =
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@ These solutions are subject to the constraint that they provide us

with the correct formula for the first moment:
m = /]Rxpoo(x;ﬁ,ﬁ,m) dx =: R(m;0,j3).
e This is the selfconsistency equation:
m = R(m;0,5).

@ The critical temperature can be calculated from

1

Var,_ (:L’)‘mzo = 50
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Phase transitions

The number of solutions, and their stability, depends on the

temperature.

1.0 —— R(m;B,0) 1.0 —— R(m;B,0) -

m m
” / 0.5
0.09 0.0
051 / s /

—1.07 —1.07 —
-1 0 1 -1 0 1
m m
(a) B =1: m = 0 is stable. (b) 8 =9: m =0 is unstable.

The slope of m — R(m; 3,0) determines the stability of the steady

states.



Stability of steady states

The stability of the solution can be seen from the associated free

energy:

Flpl =6~ / ) Inp(z dx-l—/V )d:r:-l-g/l;{/RF(x—y)p(a:

Rim) -~
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—0.12 |
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Z 014 \ /
= —0.16
== [Tee energy
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Bifurcation diagram

By solving the self-consistency equation for many values of 5 (or 6), we

can construct the bifurcation diagram:

5
0.5 4
3,
£ 0.0 S
2] m = 0 is unstable
—0.5 .
m = 0 is stable
0 : : : : :
1 2 2 4 5 1 2 3 4 5
/ B

(a) Bifurcation diagram. (b) Stability of the “m = 0" solution.



Equations for the moments*

@ We can obtain an infinite system of equations for the moments of
the McKean-Vlasov PDE:

My(t) = k[(1 = 0) Mg (t) — Myyo(t) + B (k — 1) My_5(t)
+ OM; (£) M1 (t)].

e We truncate the above system, with appropriate boundary
conditions (cumulative moment expansion), and use it to obtain a
low dimensional description of the dynamics close to the phase

transition.

4Lucarini, Zagli, P. 2022



Figure:
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Approximation of the phase transition using the truncated moments

representation. Left panel: n = 10. Comparison with calculation of (X;) using
the time average of the empirical mean over a long trajectory that includes
several transitions between the two metastable states.
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Figure: Approximation of the phase transition using the truncated moments
representation for discontinuous phase transitions



Phase transitions for colored noise”
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Figure: Bifurcation diagram with scalar OU noise

5S. Gomes, G.P., U. Vaes, SIAM MMS 2020.



The McKean-Vlasov equation on the torus

Arch. Rational Mech. Anal. 235 (2020) 635-690
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-019-01430-4

®
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Long-Time Behaviour and Phase Transitions
for the Mckean—Vlasov Equation on the Torus

J. A. CARRILLO, R. S. GVALANI®, G. A. PAVLIOTIS &
A. SCHLICHTING

Communicated by A. GARRONI

Abstract
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The McKean—Vlasov equation — Setup mperial College
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Nonlocal parabolic PDE

% = 871N+ KV - (oVW % ) in T¢ x (0, 7]

with periodic boundary conditions, o(-,0) = gy € P(T%),
= (<5 4)"

o o(-,t) € P(T4) probability density of particles

e W coordinate-wise even interaction potential

e (3 > 0 inverse temperature (fixed)

e x> 0 interaction strength (parameter)

St Entienne, 19 May, 2022 21
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The Kuramoto model: W (z) = —/2 cos (27k%) ,k € Z
w/2 w2
27/3 o 0000 ™ /3 27/3 w/3
[ 4
577/6/ ‘\7{/6 57/6 /6
H \
n® '0 ™ .0

776% / 117/ 776 1117/6
L]

iy -’53 43 5713

37/2 3n/2

K < K¢, no phase locking K > K., phase locking
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Fourier representation f(k) = (f,wy) r2(r,) With k € z¢

o A function W € L?(T¢) is H-stable, W € Hj, if

W (k) = (W) >0, VkeZz?,
@ Decomposition of potential W into H-stable and H-unstable part

Ws(x) = Z (W, w)) Lwi(z) and Wau(z) = W(x) — Ws(z) .
kelNd

St Entienne, 19 May, 2022 23
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@ Free energy functional .7,: Driving the Ws-gradient flow

=p" /QIOdeﬂ?‘F*I W(z —y)o(z)o(y) dzdy .
T¢ xT¢

e Dissipation: %, is Lyapunov-function

d

Js(0) = —ae/n(g) —/ |V log WFQCM )

e Kirkwood-Monroe fixed point mapping

F.(0) =0-To= Q_Z(Q . e—BHW*Q’ with  Z(o, k) = /Ed e BEW*(

St Entienne, 19 May, 2022 24
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Characterization of stationary states: The following are equivalent
@ o is a stationary state: 5~ Ao+ &KV - (0VIW % g) = 0.

e o is a root of Fj(o).
@ o is a global minimizer of J(0).

@ o is a critical point of Z.(p).

d

= 00 = L% is a stationary state for all x > 0.

St Entienne, 19 May, 2022 25



Existence/Uniqueness of Solutions imperial Colege
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Theorem

Under appropriate assumptions on the potential, for

00 € H3T(U) N Pac(U), there exists a unique classical solution o of the
McKean-Viasov equation such that o(-,t) € Poc(U) N C*(U) for all

t > 0. Additionally, o(-,t) is strictly positive and has finite entropy, i.e,
o(-,t) > 0 and S(p(-,t)) < 0o, for allt > 0.

St Entienne, 19 May, 2022 26



Exponential stability /convergence in relative entropy — meeil coege

Theorem

(Convergence to equilibrium) Let o(x,t) be a classical solution of the

Mckean—Vliasov equation with smooth initial data and smooth, even,

interaction potential W. Then we have:
Q@ If0<k< W, then |lo — +||2 — 0, ezponentially, as
t — o0,
A 2
@ IfW(k) 20 for allk € Z or 0 < 5 < grziiypy—» then
’H(g|%) — 0, exponentially, as t — oo,

where W(k) represents the Fourier transform and H(g|%) represents
the relative entropy.

St Entienne, 19 May, 2022 27




Nontrivial solutions to the stationary McKean—Vlasov equation?

W ¢ H; is a necessary condition for the existence of nontrivial

steady states.

o Numerical experiments indicate one, multiple, or possibly infinite

solutions

What determines the number of nontrivial solutions?

Birfurcation analysis of o — Fi(p).
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Example: Kuramoto model: W (z) = —\/%cos(%m:/L)

0.25
0.025
0.2
0.02
1 0015 0.15
< o001 <
I
S 0.005 0.1
0 0.05
-0.005
-0.01 0
2 4 6 8 10 5 0

= 1-cluster solution and uniform state 9.
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Theorem

(Local bifurcations) Let W be smooth and even and let (1/L, k)
represent the trivial branch of solutions. Then every k* € Z, k > 0 such
that

@ card{k €Z,k>0: W(k)=W(k")} =1,
Q@ W(k) <0,

corresponds to a bifurcation point of the stationary McKean—Vlasov

equation through the formula

VL
Ry = ———= )

BW (k*)

with (1/L, k) the bifurcation point.

St Entienne, 19 May, 2022 30



Transition points: Qualitative change of minimizers imperial College
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Definition (Transition point

A parameter value k. > 0 is said to be a transition point of % if it

satisfies the following conditions,

Q For 0 < K < K¢ 0o s the unique minimiser of % (o)
@ For Kk = K¢ 0o IS a minimiser of .Z(p).

@ For k > ket Jok # 000, such that g, is a minimiser of % (o).

St Entienne, 19 May, 2022 31
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Definition (Continuous and discontinuous transition point)

A transition point k. > 0 is a continuous transition point of % if
@ For k = K¢ 0o is the unique minimiser of % (o).

@ For any family of minimizers {0, # 0oo }x>r, it holds

limsup ||ox — 0s0ll; = 0.

Klke

A transition point k. > 0 which is not continuous is discontinuous.

St Entienne, 19 May, 2022 32
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Summary of critical points:
@ k. transition point.
@ K, bifurcation point.
da
. . e _ L2 .
@ x4 point of hri(iar stability, i.e., Ky = oo W (8)/000) with
ky = argmin W (k).

If there is exactly one ky, then x4 = k, is a bifurcation point.

St Entienne, 19 May, 2022 33



Conditions for continuous and discontinous phase transitiem coee

Theorem

(Discontinuous and continuous phase transitions) Let W be smooth and
even and assume the free energy %, g exhibits a transition point,

Ke < 00. Then we have the following two scenarios:

@ If there exist strictly positive k* kP, k® € Z with
W (k*) = W(kb) = W (k°) = min, W (k) < 0 such that k% = k> + k¢
or k* = 2kb, then k. is a discontinuous transition point.

Q Let k! = argmin, W (k) be well-defined with W (kF) < 0. Let W,
denote the potential obtained by multiplying all the negative W(k:)

except W (k') by some o € (0,1]. Then if  is made small enough,
the transition point k. is continuous.

St Entienne, 19 May, 2022 34
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Figure: Continuous vs discontinuous phase transitions. Continuous phase
transition (upper diagram): the unique critical point (shown in blue) loses its
local stability through a local (pitchfork) bifurcation which gives rise to new
locally stable critical points. Discontinuous phase transition (lower diagram):
the unique critical point retains its local stability but new critical points arise
in the free energy landscape through a saddle node bifurcation.




The generalized Kuramoto model imperial College
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Proposition

The generalised Kuramoto model W (x) = —wy(z), for some

k€ N,k # 0 exhibits a continuous transition point at k. = K.
Additionally, for k > ke, the equation F(o,k) =0 has only two
solutions in L*(U) (up to translations). The nontrivial one, oy
minimises %, for k > k. and converges in the narrow topology as

Kk — 00 to a normalised linear sum of equally weighted Dirac measures
centred at the minima of W (x).

St Entienne, 19 May, 2022 36



The noisy Hegselmann—Krause model for opinion dynamics

@ The noisy Hegselmann—Krause system models the opinions of NV
interacting agents such that each agent is only influenced by the

opinions of its immediate neighbours. The interaction potential is

Wik (2) = —% ((W - 12z>>2

e for some R > 0. The ratio R/L measures the range of influence of

an individual agent with R/L = 1 representing full influence.



The noisy Hegselmann—Krause model for opinion dynamics

e The Fourier transform of Wy (x) is

(—m2k?R? + 2L?) sin (”TR) — 27k LR cos (”kTR)

Wik (k) =
hk() 4\/577_3]{:3\/%

)

e with k € IN, k # 0.
e the model has infinitely many bifurcation points for R/L = 1.



@ We define a rescaled version of the potential

Wik (2) = —%R?,(er - §)>

which does not lose mass as R — 0.

Proposition

For R small enough, the rescaled noisy Hegselmann—Krause model

possesses a discontinuous transition point.
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On the Diffusive-Mean Field Limit for Weakly
Interacting Diffusions Exhibiting Phase
Transitions

MATIAS G. DELGADINO®), RISHABH S. GVALANI & GRIGORIOS A.
PAvLIOTIS

Communicated by P.-L. L1ONS

Abstract

St Entienne, 19 Nihe obyective of this article is to analyse the statistical behaviour of large
number of weakly interacting diffusion processes evolving under the influence of a



The joint diffusive-mean field limit

We consider the following system of weakly interacting diffusions with a periodic

interaction potential:

dX = —VV(e} ”dt——ZVW “YXPE— XP%)) dt + /281 dB:
i#£]

with W,V chosen to be 1-periodic.

Let p=V = Law(X,*%,..., X}V°) and consider the diffusive rescaling
PN (@, t) = NN (e e ?t) e P(RDHY).

Interpretation: zooming out in space and looking at sufficiently long (diffusive)

times.

W(x/e)

WA,



The 1d problem (Freidlin, Lifson-Jackson, 1962)

e Consider a single particle moving in a periodic potential
dX; = — sin(Xt) dt + 2571 dW;

o From the martingale central limit theorem it follows that the

rescaled process converges weakly to a Brownian motion

EXt/EZ — 2D/3 Wt

st — 1 (27 ,Fcos(x)
77 Lr=gp Joi"e dz.

e This formula was obtained by Lifson-Jackson (J. Chem. Phys.,

e where Dg =

1962) by doing a mean exit time calculation.
@ Similar result in the multidimensional case. Upper and lower

bounds on the covariance matrix of the effective Brownian motion

£ IEIP < (Dgé,€) < 57U, Ve € R




The quotiented N-particle system imperial College

London

X} = —-VV(X})d va Xi— X9)dt + /281 dB!,
i#£]

Xi e T¢ and B; are T%valued Wiener processes.
This is a reversible process with respect to the N-particle Gibbs measure

o~ HY (@)

[ e HYW dy’

TN

MN(l') =

and the law 7V evolves according to

{at;N = BATN + V- (VHNDYN),  (t,z) € (0,00) x (THN

vNV) = = Zkezd v (k+z) € P((Td)N)

Periodic rearrangement of v"

St Entienne, 19 May, 2022
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Theorem (The diffusive limit)

N ,* . s, N
p T =1limp
e—0
exists (with convergence in weak-x) and satisfies

atpN,* —V. (AeH’NVpN7*),

where the diffusion matriz is given by
AN [ ) b ()
T~

with My the invariant measure of the quotiented process on the torus, and UV the

solution of the corrector problem

V- (VO MYy = —vMY, zeTV.

The diffusive limit is affected by the problem on the torus, that exhibits phase

transitions in the mean field limit.



e Question: do the mean field and homogenization limits commute?

e—0
p‘st pN,*
N — oo ( ) N =
p=EN ?
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Theorem (Delgadino-Gvalani-P. '21)

Let Fg be the free energy on the torus and assume it exhibits a phase
transition at some 8 = .. Then for 8 < [

lim lim p®" = lim lim p&.
N—ooe—0 e—=0 N—oo

On the other hand if B > (., there exists initial data pgi)N such that

lim lim p®" # lim lim p&.
N—ooe—0 e—=0 N—oo

St Entienne, 19 May, 2022 46



Consider the quotiented Kuramoto model with a confining potential
V(z) = cos(2mz). Then there exists a § = 5, such that:

e For 5 < f3., there exists a unique steady state given by

min

~min —1 _a™™ cos(2mx a™" cos(2mx

vty =Z e (2m2) | Zmin:/e 2m2) g ,
T

for some ™" = ¢™*(3), @™ > 0, which is the unique minimiser of the

periodic mean field energy EM F-

@ For 3 > ., there exist at least 2 steady states given by

min

D’mm(m) — Z—l @ cos(2mx) , i = / e® cos(2mx) diL’,
T

min

o (CL’) _ Z;lea* cos(2mx) 7 Z;l _ / ea* cos(2mx) dz,

T
where a* < 0 < ¢™™ and both constants depend on 8. Here ™™ is the
unique minimiser and 7* is a non-minimising critical points of the

periodic mean field enerov Far, Moreover a*f £ —min.
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Figure: a™™® (solid line) and a* (dotted line) for n = 0.5. The two effective
-1

diffusion coefficients are At = T ( a)? and Amln = Io(iT\)z



Sketch of proof for N — oo followed by ¢ — 0

@ Pass to the mean field limit to obtain X*(t).

@ For the associated mean field SDE on the torus consider a moving corrector

problem:

V- (OVY) = ~V(ES), () ~ exp(=BW x5(t) = V)

and obtain time-dependent estimates:
||XiHcm(Td) S

k
10Xl om vy S d5" ((2), 7).

m=1

@ Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent

version of the martingale CLT.

@ Pass to the limit as ¢ — 0.



Sketch of proof for € — 0 followed by N — oo

@ Need to pass to the limit in the diffusion matrix A°TN:

AN = g7 (I + V¥ (y) Mn(y) dy.
(THN
@ Key idea My ~ My_1(Mn)1 as N — co + natural uniform in N estimate on

o,

/ (1 + VU (1) (M — My (Mw)1) dy
(Td)N

= [ e (- om0 ) day
(Td)N N-1
(31 - om0

@ The function My /(Mpy—-1) is symmetric in all but one of its variables. Use
techniques due to Lions pass to N — oo on C(P(T?)). Similarly pass to
N — oo to obtain My_; — 6~ € P(P(T)%).

pmin

< H] + v\IINHL2(MN,1)

L2(My_1)

@ Enough information to pass to the limit in the PDE.



Consider the fluctuations around the mean field for the Kuramoto
model GV := /N (1{, SN b — mm) . We have that GV converges in
law to G° whose law is the unique invariant measure of the following

linear stochastic PDE
4G = (710,20 + (2m) cos(2ma) + G°°) dt + /26 1de,

where £(t,2) = Y ez 2mker,(x) Bi(t). We can find the invariant

measure explicitly for each mode
k|=
Law ((G™, ek ( 25 ) i
N(0,1) k|1,

We can clearly identify the phase transition 8. = 2 when the SPDE no

longer supports an invariant measure.
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PHASE TRANSITIONS, LOGARITHMIC SOBOLEV INEQUALITIES, AND
UNIFORM-IN-TIME PROPAGATION OF CHAOS FOR WEAKLY
INTERACTING DIFFUSIONS

BY MATiAS G. DELGADINO', RISHABH S. GVALANI?, GRIGORIOS A.
PAVLIOTIS® AND SCOTT A. SMITH*

! Department of Mathematics, The University of Texas at Austin matias.delgadino@math.utexas.edu

2Max-Planck-Institut fiir Mathematik in den Naturwiss is.mpg.d
3Department of Mathematics, Imperial College London g.pavliotis@imperial.ac.uk

4Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences ssmith@amss.ac.cn

12 Dec 2021

Abstract In this article, we study the mean field limit of weakly interacting diffusions for
confining and interaction potentials that are not necessarily convex. We explore the relation-
s ship between the large N limit of the constant in the logarithmic Sobolev inequality (LSI)

St Eﬁlenne, 19 May,fange N-particle system and the presence or absence of phase transitions for the mean figid
- limit. The non- degeneracy of the LSI constant is shown to have far reaching consequences,

N T

N ]



We consider {Xg}zzl N C ]Rd, the positions of NV indistinguishable
interacting particles at time ¢ > 0, satisfying the following system of
SDEs:

. , 1 XN S .
X} = —VV(Xp)dt — S VAW (X, X])dt + /28 1dB;

j=1 (0.1)
LaW(Xév s 7X(])V) = pgN € PQ,Sym((Rd)N)a
where V:R? 5> R, W : R¢ x R? —» R, 7! > 0 is the inverse
temperature, Bf,i = 1,..., N are independent d-dimensional Brownian

motions, and the initial position of the particles is i.i.d with law piy.



Assumption

The confining potential V' is lower semicontinuous, bounded below,
Ky -convex for some Ky € R and there exists Ry > 0 and § > 0, such
that V(x) > |x|® for |z| > Ry. The interaction potential W is lower
semicontinuous, Ky -convex for some Ky € R, bounded below,
symmetric W (z,y) = W (y,x), vanishes along the diagonal

W(z,z) =0, and there exists C such that

IViW (2, y)| < CO+ [W(z,y)[ + V(z) + V(y))




e Given p(t), the solution to the McKean-Vlasov PDE, we

differentiate to obtain the dissipation

d

&EMF[p(t)]—inf EME — _ / 1871V log p(t) -V Wxp(t)+VV |*p(t) d
Q

o We have exponentially fast convergence provided that the infinite

volume log Sobolev constant

. D(p)
0 < ATy = f
< /LSt pe%cm EVF[p(0)] — inf EME’
p

is positive, where

K={pecP() : EMI[p] = inf EMT},



Theorem

Under the above Assumption, we have

lim sup )‘fJVSI S )\EOSI
N—o00

Moreover, if the mean field energy EMT : P(Q) — R U {400} given by
EME[p] .= g~ /plog d:v—|—2/ (z,y) dp(x) dp(y —1—/ ) dp(z;

admits a critical point that is not a minimiser, then A\fgy = 0, and there

exists C' > 0 such that o

Atgr < N




When Afgp > 0, we can show that the regularized log Sobolev constant

A = inf B Z(p" M)
LSI - —

oN:E(pN|My)>e g(le-ZW'N)

does not degenerate:

. N,e
m Ajds > Afer > 0.
N—00 LSI = ~LSI

Theorem

Under the above assumption, assume that A\g; > 0, and that pi,

in (0.1) has finite energy and bounded higher order moments,

EMEp] < o0 and / 2270 dpin < o0, for some § > 0.
Q

Then, for every € > 0, there exists Ng € IN, such that for every N > Ny

we have



e We are not able to fully characterise the limit of A£VSI in terms of
the mean field limit. We formulate the following conjecture.

e Under the above assumptions, we have the equality
lim Ay = A%
N—o00

@ These results suggest that:

@ the absence of phase transitions
@ the non-degeneracy of the infinite volume log Sobolev constant

@ the validity uniform-in-time propagation of chaos

o are all equivalent



Theorem

‘

Under the above Assumption, assume that imsupy_,o Mg > 0. Then,

there exists a unique steady state pg to the McKean-Vlasov PDE.

Moreover, there exists C > 0, such that
2 2

w05 M) <

e P (As1)?

_2 —
dy(p§™, My) < T(pEN|My) <

=l Q




Theorem

Under the above assumption, let p!¥ and p denote the unique solutions
to the particle and mean field dynamics. Assume that pi has finite
energy EMT[py,] < oo, that the gradient of the square of the interaction
potential is uniformly integrable

SUDe(0,00] Jo [VIW ? + p(t)p(t) da < oo, and that

lim inf y_ oo )‘£VSI =: A>* > 0. Then,

da(p™N (1), poN (1)) < % for allt > 0, where

) {1/2 if Ky 4+ Ky >0

1 A .
im ZfKV+KW<O

with Ky and Ky the convexity constants of V. and W in A1,A2. In
the case where Ky + Ky (1 —1/N) =0, we can pick any 0 < 1/2.
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Data generation process

Three cases for model hypothesis. We observe data as either:

© N dependent paths generated from IPS, {(mﬁ*’i)SE[O,t]}L

N

i=

© N independent paths generated from McKean SDE, {(xg*’[i])se[o,t]}

@ A single path from McKean SDE and the full evolution u? . (z) of the density

for all x

Case 3 not practically relevant - almost standard SDE estimation case

In each case we wish to estimate true parameter 8 used to generate the data




Data generation process
0™ is true parameter. Data can be generated by different models.

Cases for s € [0, t]:

@ Paths of particles of IPS:
da?" N = B(6", 20 b N & Myds + odwi Y
@ N independent paths of McKean SDE:
de?" 1 = B(67, :cg*’m,ug)ds + odw!?
@ One path of McKean SDE and the full evolution of the density for all z:

dz? = B(67, 27, u?)ds + odw,

ol (z) =V {%UUTVug* (z) +ul (m)B(G*,LLyug)}

@ Notation:
Bl6) = 00,2) + [ 00,2,
R4



Parameter estimation using likelihood inference

@ Ideal Girsanov likelihood for McKean SDE

0

dP¢
L4(0; X) =log —+ (X
t( ) ) 0og de*( )

:/ L(G,azs,us)ds—l—/ (G(0, xs, ps), dws).
0 0
with
Bb.0) =000.0) + | 6(0..9)uty)
Rd

G(ayl':/”’) = B(@,m,u) - 3(9*737’//“)

1
L(aaxa/‘l’) = —§||G(9,ZE,M)H2



Likelihood approximations and ML estimation
@ Cases 1-2 require particle approximations:

t
£ ( NZ [/ ©, x;N,uiV)ds+/ (GO, 25N, i) dwi™) |,
0

=N (0)

with
1 N
=N 2O
j=1

Resulting approximate MLE:

0Y = arg sup L} ().
0eRP

@ Case 3 no need for approximation

0, = arg sup L;(0).
6€RP



MLE convergence: the offline case

@ Offline MLE:

N

e observations after a fixed time interval [0,¢] : {(mi)se[o,t] }izl

(dropping 6* superscripts above)
e estimate 0™ using 0, or éév

@ There are different asymptotic regimes
o t — o0o: 0; well understood [Levanony et al 94, Wen et al 16] resp.

e N — oo: (fixed t) previously established with linear parametrisation in 6
[Kasonga 90]

@ Weak consistency and asymptotic normality holds



Offline parameter estimation - convergence

Theorem

Under the above and some more identifiability assumptions, let © C RP be a compact

set and 0 € ©. Then for any fixed t as N — oo, we have

oy o
and
NE@N —6%) 25 N(0,1,1(67))
with

16t = / / (Vo B(O" 2, p) s [Vo BO" 2, ) paa(d) s
0 Rd




Bistable Potential: Offline MLE

2% 10-1 — l18¥ el 6x 1072 — ey -ell
O(N~3) o(t3)
5 54x 1072
o 107! w
= =3x 1072
6 x 1072
2x10°2
4x1072
10 20 50 100 200 102 103
N t
NN N=2
(a) O1,—s (b) 05;

Figure: Log-log plot of the L! error of the offline MLE for ¢t = 0.5 and
N € {20,...,200} (left hand panel), and for ¢ € [100,1000] and N = 2 (right

hand panel).



Online parameter estimation

Ideal approach (case 3):

@ seek to maximise ergodic likelihood
~ 1
L(0) = lim ;Et(é’)
=5 [ B0 )~ B )| P ).
Rd

@ use stochastic gradient descent

d@t =Vt V(-)L(et,l‘t,ﬂt)dt+VgB(@t,CL't,ﬂt)dwt>

(noisy) ascent term noise term

with v; decreasing step size

@ A more clear view

d0; = v ( VoL(0)dt + (VoL (0r, e, pe) — VoL(0:))dt + Vo B(Or, e, i )dwy)
N—_——

(true) ascent term fluctuations term noise term



Online parameter estimation

@ Implementable approach uses particle approximations for likelihood terms:
~ 1 . ~ 1
L£oN(6) = lim ELQ’N(G) or LN () = lim ;ﬁiv ().
t— oo

t—o0

@ At each particle use:
d0;™ =y [Vo L0, 0™, p )t + Vo BOP™, 2™, i) du]
and average
1 &
N _ 1 PN
0 = N Z O
i=1

@ Cases 1 and 2 are identical up to specification of the data.



Online parameter estimation convergence

Theorem

Under assumptions above and some more, we have in L* (for both Cases 1,2)

lim lim ||[VoL(0N)|| = 0,

N —o0 t—o0

lim lim HVQE(G?N)H =0,

N—oo t—o0

and for Case 3

lim [|VyL(6:)]| =0,
t—o0
For Case 1 if N is finite:

lim |[VoL"N(07™)]| = lim [|VoLN (0))]| =0
t—o0 t—o0




Online ML numerical results - opinion dynamics

50 100 150 200 100 150 200
t t

Figure: Independent runs of parameter estimates for the range parameter 62,
02(0) ~ U([1.5,2.5]), and N = {10, 20,50} (left to right). Top: typical saple data
trajectories with 65 = 0.5.



Online ML numerical results - opinion dynamics

0.0L " .

0 50 100 150 200
t

Figure: Sequence on online parameter estimates for two range parameters 65 ;
(blue) and 0 o (orange); interaction is a smooth approximation to

@o(r) =01 01,i1rc(0,0,.-



Martingale Eigenfunction Estimator

Consider a large system of N interacting particles (n =1,..., N)
ax” = —v(x(Miayde— s (xM = XY )dt+ V2o aw™
?/ n
* X X

If N — 0o = mean field limit (nonlinear SDE)

X, = —V'(X;;0) dt — (X, — my ) dt+ V20 dW;
~
E[X¢]

which can have multiple invariant measures

Goal: estimate unknown parameter given M + 1 discrete
n*)

observations of one single particle {an A Fm=0



Methodology

Idea: employ martingale estimating functions based on eigenvalues and

eigenfunctions of the generator of the mean field dynamics
Liu(z) = — (V’(x; a) + k(x — mt))u'(:v) +ou” ()

Issue: the generator is time-dependent — replace m; with the

expectation m w.r.t. the “right” invariant measure p
— _ 1 (e _ ! "
Lu(z) = (V (r;a) + k(x — m ))u (x) + ou’(x)
Er[X]

Procedure:

e Compute the first J eigenpairs —L;(x;60) = X\;(0)p;(z;6)
e Construct the martingale estimating function G%L ~(0)

o Solve the nonlinear system G7; y(f) =0 = §X4N



Algorithm

Input: Observations {XT(:A)}%I:O
Distance between two consecutive observations A
Number of eigenvalues and eigenfunctions J
: J
Smooth functions {9, (z; 0)}j:1
Confining potential V'

Output: Estimation 5& N of 0

Find the invariant measure p and compute m

Consider the equation ¢ (z;0) — (V/(z; @) + k(z — m)) ¢'(x;0) + A(0)p(x;0) =0

J

Compute the first J eigenvalues {)\; (9)}}.]:1 and eigenfunctions {¢;(:; 9)}].:1

Construct the function g;(x,y; 0) = ;(x; 6) (d)j (y;0) — e (D26, (; 0))
5: Construct the score function G, y (0) = ﬁ Zif;ol Z;Izl 9j (j(vfnn),gg}rl; 0)

6: Let é\JJw,N be the solution of the nonlinear system G%/I,N(e) =0




Convergence analysis

o Asymptotic unbiasedness:
if M = o(N) then 0,y — 0

in probability as M, N — oo

1 1
NV

e Rate of convergence:

o Asymptotic normality:
if M = o(V/N) then VM (87, y — 0) — N(0,T7)

in distribution as M, N — oo



Numerical experiments

2

Consider the double well potential V(z;a) = a - (%
Issue: phase transition occurs
Plots below the phase transition:
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Numerical experiments

Consider the double well potential V(z;a) = a - (%

Issue: phase transition occurs

Plots above the phase transition:
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Numerical experiments

Consider the nonsymmetric potential V(z; o) = « - (%4 % x)T Issue:

invariant measures around each critical point of the potential

a1 15

a2




