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Phase transitions in the McKean—Vlasov model

[Carrillo-Gvalani-Paviliotis-S. "20]
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» Overdamped Langevin equation defined on T¢ ~ [0, L)¢

N
i K i j i ;
dXp=-% Z ‘VW(X — X)dt ++2dB;  ,i=1,...,N
Jj=1,g#i
m k € [0,00) interaction strength (bifurcation parameter)
m The mean-field limit NV — oo is governed by the McKean—Vlasov equation

010 = Ao+ KV - (VW x ) in T¢ x (0,7

m properties encoded in interaction potential W : ’]I‘dL — R (coordinate-wise even)

Some applications: Models for finite N or mean-field limit include
Molecular dynamic (Lennard—Jones, Van-der-Waals)

Collective motion of agents (attractive-repulsive)

Opinions of individuals (Hegselmann—Krause)

Liquid crystals / nanorods (anisotropic, Onsager, Maier—Saupe)
Nonlinear synchronizing oscillators (Kuramoto)

|
|
|
|
|
m Chemotaxis models (Patlak—Keller—Segel)
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The Kuramoto model: W(z) = —cosx and L = 27

K < K¢, no phase locking K > K¢, phase locking



Example: 2d Gaussian attractive interaction potential——— wwu

MUNSTER

with 02 =31, L =10, kK = V2L > k..

D=



Free energy functional (Lyapunov property, gradient flow)
K
Fuo = [ elogodos s [[ Wy dsdy .
Td 2 JJraxra

Definition: Let oo, = L™%. k. is transition point, if:
e For k < K. iS 9o global minimizer of F, and unique for k < k.
e For k > k. exists another global minimizer o,

Results and Goals:
m Bifurcation analysis and local stability around g, = L~¢
m Classification for continuous and discontinuous transitions
m Understanding of the free energy landscape

m Dynamical properties related to nucleation and coarsening
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Phase transitions in McKean-Vlasov

Characterization of phase transition

— " — wwu
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Theorem [Carrillo-Gvalani-Paviliotis-S. ’20]

= T ] N
Let W : IN* — R denote the (real) Fourier modes of W.

m If there is only one dominant unstable mode k*: For a > 0 small
enough holds

W (k)

aW (k*) <W(k) forallk#k*: W(k) <0,

then the transition point k. is continuous.

k
m If there exist (near)-dominant resonating modes k%, k?, k¢:
That is for § small enough exist

L

k“,kb,kce{k’e]Nd:W(k’)ggn]il&W(k)—l—é} with k% = k*+k°,  _ 1
€

then the transition point x. is discontinuous.

= local attractive potentials lead to discontinuous phase transitions




n McKean-Vlasov

Basic properties of transition points

Summary of critical points:

B K. transition point

m K, bifurcation point
S S
- B ming W(k)/6(k)

If ky = argmin W (k) is unique, then x4 = k. is a bifurcation point.

Results from [Gates & Penrose 1970] and [Chayes & Panferov "10]

m %, has a transition point k. iff W & H

® min.%, is non-increasing as a function of x

m ky point of linear stability, i.e., Ky =

m If for some £’ : g is no longer the unique minimiser,
then Vi > K’ : 0o is 10 longer a unique minimizer

m If k. is continuous, then k. = Ky

Conclusion:

m To proof a discontinuous transition: Show g is no longer global minimizer at ;.

m To proof a continuous transition:
If k. = Ky, sufficient to show that o, at x4 is the ungiue global minimizer.

MUNSTER



Argument for resonating dominant modes (§ = 0) = = wwy

MUNSTER

Let € > 0 be sufficiently small such that ¢ = o (1 +eY peks wk> € PH(T?).
Entropy and energy of Ansatz:

K° o ’
57500 = 57 Slew) + 0 = 22 [ (5 ) 4o
keK?
i iy R’ | K00 W(E) Lapo

4

Lz
Bming W(k)/©(k)

3 3
F0) = Pyl < ( 3 wk) L O(eY).
keK?

The resonance condition k% = k? + k° ensures that

[(5 ) o

keK%™*

Combining both estimates, recalling x4 = , yields




A mountain pass theorem in the space of probability measures 10 / 26

A mountain pass theorem

[Gvalani-S. "20]




Noise-induced transitions in R?

Start form deterministic gradient flow in R?
i(t) = —VF(z) with 2(0)=zy € R?

e F has two global minima my, my € R%.

Describe the particle transition from m;
to ms under the influence of noise.

Modelproblem: Add Brownian motion
dXy = -VF(X;)dt + v20dB;,

Question: Given X (0) = mq, what is the
probability that in some finite time 7" > 0, we
have that X (T') = mq in the regime o <« 17

MUNSTER

Theorem (Freidlin-Wentzell)

The family of processes {X7} € C([0,T]; R?)
satisfy a LDP with good rate function
I:0([0,T);R%) — RU {400}

1T
10)=71 | 1O+ VPP
and it holds
P(X7 el) = exp(—a1 inf I(’y)) oK1,
yel’

for any T' C C([0,T); R%).
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Noise-induced transitions in R?
For v €T = {f € C([0,T];R%) : 4(0) = m1,y(T) = ma} let T* = arg maxc(o,r(F(y(t)) — F(~(0))):
T* T*

[5(t) = VE(y(#)]? dt + / 5(t) - VE(y(8) dt

=:c = F(v(0)),

I(y) > i/ﬂ K (t) + V() dt = le/o

2 F(y(I7)) = F((0)) 2 1nf (F(+(T")) = F(7(0)))

By classical mountain pass theorem: c a critical value of F, i.e., 3s € R? : VF(s) = 0, F(s) = ¢

where AF = F(s) — F(my).

= P(X7 €T) < exp(—o *AF)



wwu
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= Apply argument to the McKean—Vlasov N-particle system for N > 1

N
ng:—% > VW(X'-X7)dt++2dB], i=1,....N
J=1,5#i

m [Dawson-Girtner 1987] proved LDP with rate function for u € AC?([0,T], P2(T4$)) given by

1 /7
T = 7 [ 100 =V (¥ 0z + kW 5 i),
m Associated quasipotential to LDP is Fj!
P(transition: goc — 0x,) ~ exp(—Ninf{I,@(u(-)) 2 1(0) = 900, u(T) = QHC})

< exp (—Ninf{ sup  (Fr(u(T™)) — Fie(1(0))) = (0) = 000, (T) = an})

ko Trelo,T)



A mountair

Discontinuous phase transitions and metastability

m N-particle system is metastable at disc. phase transition

m By [Dawson-Gértner 1989] need to understand free energy
1free energy K>Ke

droplet
states metastable

Uniform state Stable

e —————— e o o

K<

m Missing ingredient: mountain pass theorem for F
Difficulties:
e (P(T%), W) only metric space
e F,. only lower semicontinuous




A mountain pa: orem in the

A mountain pass theorem
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Theorem [Gvalani-S. *20]

If ., has two distinct minimizers oo, = 1/L¢ and
0, € P(T9), then there exists o* € P(T%) distinct from gn,
and g, such that |0F,_|(¢*) = 0.

Moreover: F,_ (0*) =c with ¢= 11& max;ejo,1s] F (V(t))
8!

where T' = {C([0, T]; P(T4$)) : v(0) = 000, Y(T) = 0x.}-

Corollary (Arrhenius law)

The empirical McKean-Vlasov process oV) satisfies

free energy

W2 _
P[o™(T) € B (0x.), 0™ (0) = o] &2

for N sufficiently large with E(Wg(g(()N), 000)) — 0 and

A
1
1
1
1
1
1
1
1
1
1
1
1
A= F,; (0*) — Fu.(000) with o* the mountain pass point. _:
1




Models of nucleation and condensation

Nucleation of oversaturated vapor:
¢ Only monomers move

e no collisions between clusters

« clusters grow/shrink by one monomer
Applications:

e polymerization

e cloud and galaxy formation mechanism
[Smoluchowski 1916, Becker-Doéring 1935]

Clustering of granular gases:

e Single beads hop to neighboring cells
e hopping rate depends on cell filling

e phases: frozen, clustering, gaseous
Applications:

e migration, population dynamics

o wealth exchange

[Spitzer 1970 zero-range process]

Goal: Dynamic of cluster population.
[Tanaka et al J. Chem. Phys. 2011]



Longtime behavior of
the exchange-driven growth model

[S. "19]
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Exchange driven gro
Previous models evolve size distribution (Xj)g>0 in a population of clusters [Ben-Naim, Krapivsky '03]
K(l,k—1)

X1+ X X+ X121, for k,1>1.

K(k,—1)

o K(I,k—1) rate kernel: jump of monomer from [ to k — 1 cluster
e rate equation is a countable nonlinear coupled birth-death chain:

Cr = Akfl[c]ckfl — (Ak[C] + Bk[c])ck —+ Bk+1[C]Ck+1 (EDG)
with (state-dependent) birth- and death-rates

Apald =Y K(k—1)¢  and  Bild =Y K(k,1-1)c_y fork>1.

>1 >1
e two conservation laws:
1= E Ck and 0= g keg
E>0 k>1

Theorem (Well posedness [S. J Nonlinear Sci '19])

If the kernel K has at most linear growth K (k,1) < C'kl, then the solution to (EDG) is a semigroup
onPe={cel(INo) : >0, > ,0ck =1, D51 kcx = o} with ¢(0) € P2 for ¢ > 0.



If the kernel is curl-free Kk
k—1
Xk—1+ X1+ Xo o Xk+Xl 1+ Xo

AT K(k,1—1)K(1,0)K(1,k—1)
% ) <

QX‘O@ %Ké = K(,k—1)K(k,0)K(1,1—1)
X1+ X1+ X3

then there exists a chemical potential and (formal) equilibria

l
=1 @=IT" Y and wio= 52w 26)=F 00,
k=1 ’ >0

These equilibria have a critical mass density g, € [0, 0]

K
0c = lim supz lwi (o) with ¢ = lim (k,0)

T (0, 0).
b 1 k— o0 K(].,k‘ - 1)

= Free energy functional (gradient flow, Lyapunov function)

Z Ck log Z ci log ey, + Z Cck log

k>0 k>0 k>0

wwu
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vior e Longtime b

Longtime behavior and phase separation — wwu
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Theorem [S. J Nonlinear Sci ’19]

Let K be curl-free, sublinear, sufficiently regular with p. € (0, c0).
Then for any ¢ € (0,00) and any ¢(0) € P2, the solution ¢ of (EDG) satisfies
1. If g < go: Then Fle(t)] = Flwe] and Y (I +D]er(t) —wf| =0 as t— 0.
1>0
2. If o > o1 Then Fle(t)] — Flw] + (0 — oc) log ¢ and ¢;(t) — w)* for all I > 0 as t — oo.
In particular no ¢'-convergence, since excess mass o — o. vanishes!
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Self-similar behavior of
the exchange-driven growth model

[Eichenberg-S. "21]
0 o J
Q¥ 9.
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Speaal class of kernels [Ben-Nalm Krapivsky ’03] —WWU

Product kernel: for A € [0,2) m K)(k,0)=0forall k>1
= no formation of new clusters
K(k,1) = Kx(k,1) = ax(k)ax(l) = Homogeneity and symmetry
kX, A >0, simplify (EDG) through moments
with ay (k) =
1—6k0, A=0, Ml => 1" ¢
1>1
0= MA [C] [ Average size of alive clusters
Ald (- 261 + 2%¢y), EDG)
Myl (k= 1) ex1 — 2k e + (k + 1) g 1) (1) 1_60 chk O[C]
Theorem (Coarsening rate) a Coarsening exponent
th, if 0 <\ <3/, 5= 1
0(t) x < exp(Cot), if A =3/2, 3—2A

(tgel — )P, if32 <A <2,



Self-similar behavior wwu
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Behave solutions dynamical self-similar? Measure-valued formulation
cx(t) o< ps(t)2gx(s(t) 1k for t > 17
'(') () 2gx(s(t)"'k) 1e(t) = 5(6) 3 (1)) 1
for the explicit profile =
1 .%‘1 A 2—A =
9A(@) = 752 — 2-\°¢ p( (2—X)2 )’ Number of clusters

Theorem (Self-similar behavior)

o0
Myl =1—=¢y = s_l(t)/ dpte.
1. For 0 < X < 3/2 there exists C'= C'(A, p) > 0 and 0

s(t) = CtP with 8 = (3 —2\)71, Total mass density
such that every global solution ¢ to (EDG,) satisfies o
te(t) = pgx as t — oo. M| = / rdpte.
2. For A =3/2 0

3. For 3/2 < A < 2 and tge as before there exists
C =C(\p)>0and
s(t) =C(tga —t)?  with = (3—-2))""!
such that every solution ¢ to (EDG) existing on [0, tge1)
satisfies te(t) = pgn as t — tgel.



Some ingredients for the proof —— wwy
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Time-change Continuous solution:
T(t) = fg M)\[C](S) ds. oU = (930(0,,\8961/{) =LyU, (t,CE) € R2 ,
ax0,U|z=0 =0, te Ry,

Discrete weighted Laplacian:

d-u = An(ayu), k>1, U(0,-) = U, z€R,.
u(r,0) =0, >0 Discrete-to-continuum interpolation:

U(t,z) =e2U(e ', e 1).
Tail-distribution: U(t,k) = 3}, u(t, ) (t,x) =e~U(e™'t, [e7a] +1)
- parabolic scaling: k oc t* with a = ﬁ € [— oo)

{f)tU(k) = 9 (axd*U)(k),

o*U(t,0) = 0. '
Proposition (Discrete Nash-inequality) It holds e — .

Proof: Replacement lemma, compactness

2(2—X) 1
U3 S UM Ex(U)™=>, Note: For t = 1, we get
Dirichlet form: Ex(U) =3, k’\|8+U(k)|2. e U™, le7 x| + 1) — pGa(x).

= Obtain long-time behavior by setting t = e~ !.
= Nash-continuity, decay, moment bounds, ... & Y &



Oscillations in a Becker—Doring model with

injection and depletion
[Niethammer-Pego-S.-Velazquez, to appear SIAP, arXiv:2102.06751]




and depletion

Hopf blfurcatlon of a bubbleator

MUNSTER

Becker-Doring bubbleator:

0> X4 Injection S > 0
Xi4+ X e Xpy, k=1,2,3,...
ke (14k =)
X ELLIN 0, Depletion R > 0.

D=1 — /m e )t i,
Orf + 0z (2 f) = —R:rrof, x>0
Parameters: R=0.1,a = 8 =1/3, r = 2/3 2 f(z,7) e x50
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