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droplet stable

uniform state stable

metastable

Mean-field systems and phase transitions

𝛥

Rare events and mountain-passes

Potential theory

Fact 2: hA,B(x) = P[τxA < τxB] satisfies

∆hA,B(x) = 0 x ∈ (A ∪B)c

hA,B(x) = 1 x ∈ A
hA,B(x) = 0 x ∈ B

⇒ hA,B(x) =
∫

∂A
GBc(x, y) ρA,B(dy)

ρA,B: “surface charge density” on ∂A
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Metastability and potential theory

Phase separation in cluster growth
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Phase transitions in the McKean–Vlasov model
[Carrillo-Gvalani-Paviliotis-S. ’20]

droplet stable

uniform state stable

metastable
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The McKean–Vlasov equation – Derivation
Overdamped Langevin equation defined on Td

L ≃ [0, L)d

dXi
t = − κ

N

N∑
j=1,j ̸=i

∇W (Xi − Xj)dt +
√

2 dBi
t , i = 1, . . . , N

κ ∈ [0, ∞) interaction strength (bifurcation parameter)
The mean-field limit N → ∞ is governed by the McKean–Vlasov equation

∂tϱ = ∆ϱ + κ∇ · (ϱ∇W ⋆ ϱ) in Td
L × (0, T ]

properties encoded in interaction potential W : Td
L → R (coordinate-wise even)

Some applications: Models for finite N or mean-field limit include
Molecular dynamic (Lennard–Jones, Van-der-Waals)
Collective motion of agents (attractive-repulsive)
Opinions of individuals (Hegselmann–Krause)
Liquid crystals / nanorods (anisotropic, Onsager, Maier–Saupe)
Nonlinear synchronizing oscillators (Kuramoto)
Chemotaxis models (Patlak–Keller–Segel)
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Example: Nonlinear synchronization of oscillators
The Kuramoto model: W (x) = − cos x and L = 2π

κ < κc, no phase locking κ > κc, phase locking
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Example: 2d Gaussian attractive interaction potential
W (x) = − 1

2πσ2 e− |x|2

2σ2

with σ2 = 1
2 , L = 10, κ =

√
2L > κc.
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Transition points and types of phase transitions

Free energy functional (Lyapunov property, gradient flow)

Fκ(ϱ) =
∫
Td

L

ϱ log ϱ dx + κ

2

∫∫
Td

L
×Td

L

W (x − y)ϱ(x)ϱ(y) dx dy .

Definition: Let ϱ∞ ≡ L−d. κc is transition point, if:
• For κ ≤ κc is ϱ∞ global minimizer of Fκ and unique for κ < κc

• For κ > κc exists another global minimizer ϱκ

Results and Goals:
Bifurcation analysis and local stability around ϱ∞ ≡ L−d

Classification for continuous and discontinuous transitions
Understanding of the free energy landscape
Dynamical properties related to nucleation and coarsening
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Characterization of phase transition

Theorem [Carrillo-Gvalani-Paviliotis-S. ’20]

Let W̃ : Nd → R denote the (real) Fourier modes of W .
If there is only one dominant unstable mode k∗: For α > 0 small
enough holds

αW̃ (k∗) ≤ W̃ (k) for all k ̸= k∗ : W̃ (k) < 0 ,

then the transition point κc is continuous.
If there exist (near)-dominant resonating modes ka, kb, kc:
That is for δ small enough exist

ka, kb, kc ∈
{

k′ ∈ Nd : W̃ (k′) ≤ min
k∈Nd

W̃ (k) + δ

}
with ka = kb +kc,

then the transition point κc is discontinuous.

⇒ local attractive potentials lead to discontinuous phase transitions
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Basic properties of transition points
Summary of critical points:

κc transition point
κ∗ bifurcation point

κ♯ point of linear stability, i.e., κ♯ = − L
d
2

β mink W̃ (k)/Θ(k) .
If k♯ = arg min W̃ (k) is unique, then κ♯ = κ∗ is a bifurcation point.

Results from [Gates & Penrose 1970] and [Chayes & Panferov ’10]
Fκ has a transition point κc iff W ̸∈ Hs

min Fκ is non-increasing as a function of κ

If for some κ′ : ϱ∞ is no longer the unique minimiser,
then ∀κ > κ′ : ϱ∞ is no longer a unique minimizer
If κc is continuous, then κc = κ♯

Conclusion:
To proof a discontinuous transition: Show ϱ∞ is no longer global minimizer at κ♯.
To proof a continuous transition:
If κ∗ = κ♯, sufficient to show that ϱ∞ at κ♯ is the unqiue global minimizer.
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Argument for resonating dominant modes (δ = 0)
Let ε > 0 be sufficiently small such that ϱ = ϱ∞

(
1 + ε

∑
k∈Kδ wk

)
∈ P+(Td).

Entropy and energy of Ansatz:

β−1S(ϱ) = β−1

S(ϱ∞) + |Kδ|
2 ϱ∞ε2 − ϱ∞

3

∫
ε3
(∑

k∈Kδ

wk

)3
+ O(ε4)


κ♯

2 E(ϱ, ϱ) = κ♯

2 E(ϱ∞, ϱ∞) + κ♯ε
2|Kδ|ϱ2

∞
2 min

k∈Nd

W̃ (k)
Θ(k) Ld/2

Combining both estimates, recalling κ♯ = − L
d
2

β mink W̃ (k)/Θ(k) , yields

Fκ♯
(ϱ) − Fκ♯

(ϱ∞) ≤ −ε3ϱ∞

3β

∫ ( ∑
k∈Kδ

wk

)3
+ O(ε4).

The resonance condition ka = kb + kc ensures that∫ ( ∑
k∈Kδ∗

wk

)3
> 0 .
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A mountain pass theorem

[Gvalani-S. ’20]

𝛥
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Noise-induced transitions in Rd

Start form deterministic gradient flow in Rd

ẋ(t) = −∇F (x) with x(0) = x0 ∈ Rd

• F has two global minima m1, m2 ∈ Rd.

Describe the particle transition from m1
to m2 under the influence of noise.

Modelproblem: Add Brownian motion

dXt = −∇F (Xt) dt +
√

2σdBt ,

Question: Given X(0) = m1, what is the
probability that in some finite time T > 0, we
have that X(T ) = m2 in the regime σ ≪ 1?

Theorem (Freidlin–Wentzell)

The family of processes {Xσ
t } ∈ C([0, T ];R2)

satisfy a LDP with good rate function
I : C([0, T ];Rd) → R ∪ {+∞}

I(γ) = 1
4

∫ T

0
|γ̇(t) + ∇F (γ(t))|2 dt.

and it holds

P(Xσ
t ∈ Γ) ≈ exp

(
−σ−1 inf

γ∈Γ
I(γ)

)
σ ≪ 1,

for any Γ ⊂ C([0, T ];Rd).
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Noise-induced transitions in Rd

For γ ∈ Γ = {f ∈ C1([0, T ];Rd) : γ(0) = m1, γ(T ) = m2} let T ∗ = arg maxt∈[0,T ](F (γ(t)) − F (γ(0))):

I(γ) ≥ 1
4

∫ T ∗

0
|γ̇(t) + ∇F (γ(t))|2 dt = 1

4

∫ T ∗

0
|γ̇(t) − ∇F (γ(t))|2 dt +

∫ T ∗

0
γ̇(t) · ∇F (γ(t)) dt

≥ F (γ(T ∗)) − F (γ(0)) ≥ inf
γ∈Γ

(F (γ(T ∗)) − F (γ(0))) =: c − F (γ(0)) ,

By classical mountain pass theorem: c a critical value of F , i.e., ∃s ∈ Rd : ∇F (s) = 0, F (s) = c.

⇒ P(Xσ
t ∈ Γ) ≲ exp(−σ−1∆F ) where ∆F = F (s) − F (m1).
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LDP for McKean-Vlasov interaction particle system

Apply argument to the McKean–Vlasov N -particle system for N ≫ 1

dXi
t = − κ

N

N∑
j=1,j ̸=i

∇W (Xi − Xj)dt +
√

2 dBi
t, i = 1, . . . , N

[Dawson-Gärtner 1987] proved LDP with rate function for µ ∈ AC2([0, T ], P2(Td
L)) given by

Iκ(µ(·)) := 1
4

∫ T

0
∥∂tµt − ∇ · (µt∇(log µt + κW ⋆ µt))∥2

−1,µt
dt

Associated quasipotential to LDP is Fκ!

P(transition: ϱ∞ → ϱκc
) ≃ exp

(
−N inf{Iκ(µ(·)) : µ(0) = ϱ∞, µ(T ) = ϱκc

}
)

≤ exp
(

−N inf
µ

{
sup

T ∗∈[0,T ]
(Fκ(µ(T ∗)) − Fκ(µ(0))) : µ(0) = ϱ∞, µ(T ) = ϱκc

})
.
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Discontinuous phase transitions and metastability

N -particle system is metastable at disc. phase transition
By [Dawson-Gärtner 1989] need to understand free energy Fκ

uniform
states

variance

free energy

droplet
states

droplet stable

uniform state stable

metastable

>

=

<

Missing ingredient: mountain pass theorem for Fκ

Difficulties:
• (P(Td

L), W2) only metric space
• Fκ only lower semicontinuous
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A mountain pass theorem
Theorem [Gvalani-S. ’20]

If Fκc
has two distinct minimizers ϱ∞ ≡ 1/Ld and

ϱκc
∈ P(Td

L), then there exists ϱ∗ ∈ P(Td
L) distinct from ϱ∞

and ϱκc
such that |∂Fκc

|(ϱ∗) = 0.
Moreover: Fκc

(ϱ∗) = c with c = inf
γ∈Γ

maxt∈[0,T s] F(γ(t)) ,

where Γ = {C([0, T ]; P(Td
L)) : γ(0) = ϱ∞, γ(T ) = ϱκc

}.

Corollary (Arrhenius law)

The empirical McKean-Vlasov process ϱ(N) satisfies

P
[
ϱN (T ) ∈ B

W2
ε (ϱκc

), ϱ(N)(0) = ϱ
(N)
0

]
≲ e−N∆

for N sufficiently large with E(W2(ϱ(N)
0 , ϱ∞)) → 0 and

∆ := Fκc
(ϱ∗) − Fκc

(ϱ∞) with ϱ∗ the mountain pass point.

free energy

𝜚 𝜚∞

𝜚*

𝛥
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Models of nucleation and condensation
Nucleation of oversaturated vapor:
• Only monomers move
• no collisions between clusters
• clusters grow/shrink by one monomer
Applications:
• polymerization
• cloud and galaxy formation mechanism
[Smoluchowski 1916, Becker–Döring 1935]

Clustering of granular gases:
• Single beads hop to neighboring cells
• hopping rate depends on cell filling
• phases: frozen, clustering, gaseous
Applications:
• migration, population dynamics
• wealth exchange
[Spitzer 1970 zero-range process]

Goal: Dynamic of cluster population.
[Tanaka et al J. Chem. Phys. 2011]

[S Dorbolo et al 2011 Eur. J. Phys. 32]
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Longtime behavior of
the exchange-driven growth model

[S. ’19]
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Exchange driven growth (EDG)
Previous models evolve size distribution (Xk)k≥0 in a population of clusters [Ben-Naim, Krapivsky ’03]

Xk−1 + Xl

K(l,k−1)−−−−−−⇀↽−−−−−−
K(k,l−1)

Xk + Xl−1 , for k, l ≥ 1 .

• K(l, k − 1) rate kernel: jump of monomer from l to k − 1 cluster
• rate equation is a countable nonlinear coupled birth-death chain:

ċk = Ak−1[c]ck−1 − (Ak[c] + Bk[c])ck + Bk+1[c]ck+1 (EDG)
with (state-dependent) birth- and death-rates

Ak−1[c] =
∑
l≥1

K(l, k − 1)cl and Bk[c] =
∑
l≥1

K(k, l − 1)cl−1 for k ≥ 1.

• two conservation laws:
1 =

∑
k≥0

ck and ϱ =
∑
k≥1

kck

Theorem (Well posedness [S. J Nonlinear Sci ’19])

If the kernel K has at most linear growth K(k, l) ≤ C k l, then the solution to (EDG) is a semigroup
on Pϱ = {c ∈ ℓ1(N0) : ck ≥ 0 ,

∑
k≥0 ck = 1 ,

∑
k≥1 k ck = ϱ} with c(0) ∈ Pϱ for ϱ ≥ 0.
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Equilibria - longtime behavior - phase separation
If the kernel is curl-free

Xk−1 + Xl−1 + X1

K
(l,0)

K
(1,l−1)

Xk−1 + Xl + X0
K(l,k−1)

K(k,l−1)
Xk + Xl−1 + X0

K
(1

,k
−1)

K
(k

,0) ⇐⇒
K(k, l − 1) K(l, 0) K(1, k − 1)
= K(l, k − 1) K(k, 0) K(1, l − 1)

then there exists a chemical potential and (formal) equilibria

Q0 = 1, Ql =
l∏

k=1

K(1, k − 1)
K(k, 0) and ωl(ϕ) = ϕl Ql

Z(ϕ) with Z(ϕ) =
∑
l≥0

ϕlQl

These equilibria have a critical mass density ϱc ∈ [0, ∞]
ϱc = lim sup

ϕ↑ϕc

∑
l≥1

lωl(ϕ) with ϕc = lim
k→∞

K(k, 0)
K(1, k − 1) ∈ (0, ∞].

⇒ Free energy functional (gradient flow, Lyapunov function)
F [c] =

∑
k≥0

ck log ck

Qk
=
∑
k≥0

ck log ck +
∑
k≥0

ck log 1
Qk

.
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Longtime behavior and phase separation
Theorem [S. J Nonlinear Sci ’19]

Let K be curl-free, sublinear, sufficiently regular with ρc ∈ (0, ∞).
Then for any ϱ ∈ (0, ∞) and any c(0) ∈ Pϱ, the solution c of (EDG) satisfies

1. If ϱ ≤ ϱc: Then F [c(t)] → F [ωϱ] and
∑
l≥0

(l + 1)|cl(t) − ωϱ
l | → 0 as t → ∞.

2. If ϱ > ϱc: Then F [c(t)] → F [ωϱc ] + (ϱ − ϱc) log ϕc and cl(t) → ωϱc

l for all l ≥ 0 as t → ∞.
In particular no ℓ1-convergence, since excess mass ϱ − ϱc vanishes!

1 2
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Self-similar behavior of
the exchange-driven growth model

[Eichenberg-S. ’21]
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Special class of kernels [Ben-Naim, Krapivsky ’03]
Product kernel: for λ ∈ [0, 2)

K(k, l) = Kλ(k, l) = aλ(k)aλ(l)

with aλ(k) =
{

kλ, λ > 0,

1 − δk,0, λ = 0,
ċ0 = Mλ[c] c1,

ċ1 = Mλ[c]
(
−2c1 + 2λc2

)
,

ċk = Mλ[c]
(
(k − 1)λck−1 − 2kλck + (k + 1)λck+1

)
.

EDGλ

Theorem (Coarsening rate)

ℓ(t) ∝


tβ , if 0 ≤ λ < 3/2,

exp(C0t), if λ = 3/2,

(tgel − t)β , if 3/2 < λ < 2,

Kλ(k, 0) = 0 for all k ≥ 1
⇒ no formation of new clusters
Homogeneity and symmetry
simplify (EDG) through moments

Mκ[c] =
∑
l≥1

lκ cl

Average size of alive clusters

ℓ(t) = 1
1 − c0(t)

∞∑
k=1

k ck(t) = ρ

M0[c] ,

Coarsening exponent

β = 1
3 − 2λ

.
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Self-similar behavior
Behave solutions dynamical self-similar?

ck(t) ∝ ρ s(t)−2gλ

(
s(t)−1k

)
for t ≫ 1?

for the explicit profile

gλ(x) = 1
Zλ

x1−λ

2 − λ
exp
(

− x2−λ

(2 − λ)2

)
,

Theorem (Self-similar behavior)

1. For 0 ≤ λ < 3/2 there exists C = C(λ, ρ) > 0 and
s(t) = Ctβ with β = (3 − 2λ)−1,

such that every global solution c to (EDGλ) satisfies
µc(t) ⇀ ρ gλ as t → ∞.

2. For λ = 3/2 . . .

3. For 3/2 < λ < 2 and tgel as before there exists
C = C(λ, ρ) > 0 and

s(t) = C(tgel − t)β with β = (3 − 2λ)−1,
such that every solution c to (EDGλ) existing on [0, tgel)

satisfies µc(t) ⇀ ρ gλ as t → tgel.

Measure-valued formulation

µc(t) = s(t)
∑
k≥1

ck(t)δs(t)−1k.

Number of clusters

M0[c] = 1 − c0 = s−1(t)
∫ ∞

0
dµc.

Total mass density

M1[c] =
∫ ∞

0
x dµc.
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Some ingredients for the proof
Time-change

τ(t) =
∫ t

0 Mλ[c](s) ds.

Discrete weighted Laplacian:{
∂τ u = ∆N(aλu), k ≥ 1,

u(τ, 0) = 0, τ ≥ 0.
.

Tail-distribution: U(t, k) =
∑

l≥k u(t, l){
∂tU(k) = ∂−(aλ∂+U)(k),
∂+U(t, 0) = 0.

.

Proposition (Discrete Nash-inequality)

∥U∥2
2 ≲ ∥U∥

2(2−λ)
3−λ

1 Eλ(U) 1
3−λ ,

Dirichlet form: Eλ(U) =
∑

k≥1 kλ|∂+U(k)|2.

⇒ Nash-continuity, decay, moment bounds, . . .

Continuous solution:
∂tU = ∂x(aλ∂xU) = LλU , (t, x) ∈ R2

+,

aλ∂xU|x=0 = 0, t ∈ R+,

U(0, ·) = U0, x ∈ R+.

.

Discrete-to-continuum interpolation:
Uε(t, x) = ε−αU(ε−1t, ⌊ε−αx⌋ + 1).

parabolic scaling: k ∝ tα with α = 1
2−λ ∈

[ 1
2 , ∞

)
Theorem
It holds Uε → U .

Proof: Replacement lemma, compactness

Note: For t = 1, we get
ε−αU(ε−1, ⌊ε−αx⌋ + 1) → ρ Gλ(x).

⇒ Obtain long-time behavior by setting t = ε−1.
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Oscillations in a Becker–Döring model with
injection and depletion

[Niethammer-Pego-S.-Velazquez, to appear SIAP, arXiv:2102.06751]
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Hopf bifurcation of a bubbleator

Parameters: R̄ = 0.1, α = β = 1/3, r = 2/3

Becker-Döring bubbleator:

∅ S−→ X1 Injection S > 0

X1 + Xk
kα

−−−−−−−⇀↽−−−−−−−
kα(1+k−γ )

Xk+1 , k = 1, 2, 3, . . .

Xk
Rkr

−−→ ∅, Depletion R > 0.

Limit model (small oversaturation)

∂τ u = 1 −
∫ ∞

0
f(x, τ)xα dx ,

∂τ f + ∂x(xαf) = −R̄xrf , x > 0

xαf(x, τ) → eu(τ) x → 0

[Kunz, H.; Johannesmeyer , F.; Oetken , M.: Das

”pulsierende Sektglas“, CHEMKON 7 (2000) 30-31]

Thank you for your attention!
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