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Nonlinear Fokker-Planck equation with singular interaction

» We study on [0,7) x R4

u(0,2) = up(x), (NLFP)

{ Opu(t, ) = Au(t,x) — V- (u(t,x) K #, u(t,m)),
with K locally integrable and singular at 0.

» Our main interest : stochastic particle approximation of (NLFP).

» Why?
» Macroscopic to microscopic description (and back!);
» Numerical schemes...
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Classical approach: mean-field interactions

» (NLFP) is seen as the FP equation for the non-linear process

{dXt = K #uy(Xy)dt + 2dWy, (NLSDE)

L(X:) = uy.

» Particle system in mean-field interaction :

N
. 1 . . .
dxiN = ~ Y KXY = XPY) + V2aw N (PS)
j=1

and its empirical measure V' = + Zfil dyin.
» Propagation of chaos : convergence in law of " in P(C) towards
the law of X.
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Classical approach: mean-field interactions

» (NLFP) is seen as the FP equation for the non-linear process

(NLSDE)

dX; = K % ug(Xy)dt + /2dW5,
E(Xt) = U¢.

» Particle system in mean-field interaction :
1 &
N N N i, N
XN = ;K(Xt — XPY) + V24w, (PS)
J:

and its empirical measure N = ﬁ Zf\il 5X;,N.
» Propagation of chaos : convergence in law of " in P(C) towards
the law of X.

» Issues: K singular — wellposedness of (PS), (NLSDE) and the
propagation of chaos?
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Classical approach: mean-field interactions

» (NLFP) is seen as the FP equation for the non-linear process

{dXt = K #uy(Xy)dt + 2dWy, (NLSDE)

L(X:) = uy.

» Particle system in mean-field interaction :
1 &
N N N i, N
XN = ;K(Xt — XPY) + V24w, (PS)
J:

and its empirical measure u,N = ﬁ Zf\il 5X;,N.
» Propagation of chaos : convergence in law of " in P(C) towards
the law of X.
» Issues: K singular — wellposedness of (PS), (NLSDE) and the
propagation of chaos?
» Probabilistic approach to singular interactions:
» Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...

» studied by Bossy, Calderoni, Cattiaux, Fournier, Hauray, Jabin,
Jourdain, Méléard, Mischler, Osada, Pulvirenti, Talay, ...
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Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
» existence of (PS) is unknown ;
» or existence ok, but convergence unknown.
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Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
» existence of (PS) is unknown ;
» or existence ok, but convergence unknown.

Moderately interacting particles :
dXPN = F(VN w (K * Miv)(XZvN))dt +V2dWN,

where:
> VN(z) = N9V(N“z),a > 0 and V a regular density;
» F a smooth cut-off.
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Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
» existence of (PS) is unknown ;

» or existence ok, but convergence unknown.

Moderately interacting particles :
dXPN = F(VN w (K * Miv)(XZ’N)>dt +V2dWN,

where:
> VN(z) = N9V(N“z),a > 0 and V a regular density;
» [ a smooth cut-off.

» Some references : [Oelschlidger'85], [Méléard & Roelly'87],
[Jourdain & Méléard'98]
— A semigroup approach was recently developed by Flandoli, Olivera and their
collaborators to get uniform (non-quantitative) convergence of V7 x ¥
towards a mild solution to:
FKPP, 2d Navier-Stokes equations, PDE-ODE system related to aggregation

phenomena.
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Our main objectives

What assumptions on K and what suitable functional framework for
(NLFP) so the following holds?

> Convergence of {ul¥ = & Zf\il Oxin, t € [0,T7} to the solution
(NLFP) when N — oo:

» which range of a?
» what is the rate of convergence ?

> Well-posedness of (NLSDE).

> Propagation of chaos towards (NLSDE) (without the cut-off and the
mollifier)
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Which kernels?

A typical example in dimension d > 2 is the family of Riesz kernels:

Kq(x) = £VV(2)

where
- if se(0,d—1
Vifa) = {10 C O Ty
—loglz| ifs=0
Examples:
» Coulomb interactions: K, with s =d —2 (d > 3);

» 2d Navier-Stokes equation (vorticity): K(x) = |9;|l2;

» Parabolic-elliptic Keller-Segel model: K(z) = —x I (attractive...);

» Some attractive-repulsive kernels.
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Overview

Rate of convergence to the PDE



Assumptions on K and «

(Hx):
(i) K € LP(B,), for some p € [1,+0o0];
(i) K € L9(BY), for some q € [1, +o0];
(iii) There exists r > max(p’,q’) and ¢ € (0, 1] such that:

Ne(K * f) S\ flprnpr@ay, Yf € L*nL™(RY).

(N¢ the Holder seminorm of parameter ¢.)

(Ho):  «a and r satisfy

1

0<a< :
“ d+2d(3 —L1)vo
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Assumptions on K and «

(Hx):
(i) K € LP(B,), for some p € [1,+0o0];
(i) K € L9(BY), for some q € [1, +o0];
(iii) There exists r > max(p’,q’) and ¢ € (0, 1] such that:

Ne(K * f) S\ flprnpr@ay, Yf € L*nL™(RY).

N¢ the Hlder seminorm of parameter ¢.
<

(Ho):  «a and r satisfy
< 1
a :
d+2d(3 —L1)vo
» Notice here that for f € L' N L"(R?) one has

0<

1K * fllpee ey < Crea | fllprnne@e)-
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Convergence of the mollified empirical measure

Assume (always today) that ug > 0 and [, uo = 1.

Proposition

Let K satisfying (H)(i)-(ii), uo € L* N L™(R?) with r > max(p’, q').
There exists T > 0 and a unique u : [0,T] x R? — R s.t.

we ([0, T); L' N L™ (RY))

and

t
up = ePug — / V- (e(t*S)A(us K xug))ds, 0<t<T.
0

Denote by T;,,. the maximal existence time.
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Convergence of the mollified empirical measure

Theorem ([O.-R.-T. Ann Sc Norm Super Pisa'21+])
Let T < Tyar and assume (Hg) and (H,). Under suitable conditions on

the initial conditions, we have for {ul = VN «pulN ¢ €[0,T)}yen -
Ve >0 andVm > 1,

H||UN - ullT,LlﬁL"(]Rd)HLm(Q) S H||U(])v - U0||leLr(Rd)||Lm(Q)

+ N*Q*f’e’

where

0= min <a<, : <1_a(d+d(1—§)vo)>).
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Convergence of the mollified empirical measure

Without the cutoff F in the drift of the particles, we get:
Corollary

For any ¢ € (0,0), any n > 0 and any m > 1,

1
P (||U§V - ut”T,leLT(Rd) 2 77) S n—m(HHu(])V - u0||leLr(Rd)HLm(Q)

+ N—9+5)m.
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Some consequences and remarks

» Same rate for the genuine empirical measure of (PS)

sup [l — welo <CN7eT,
te[0,T L™ ()
where || - ||o denotes the Kantorovich-Rubinstein metric

» The rate in the previous results holds almost surely.

1

» Cannot expect here a N~z rate of convergence because of the short

range interactions : “best possible” N~¢.
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Applications

» Coulomb-type kernels (like Biot-Savart in d = 2, Riesz with

s=d—2),
> convergence happens for a < ﬁ (d=2=a=(3)7);
- +
> best possible rate is p = (ﬁ) (obtained for o = (2(d1+1)) '

r=+o0, {=1).
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Applications

» Coulomb-type kernels (like Biot-Savart in d = 2, Riesz with
s=d—2),
1

> convergence happens for a < G- (d=2=a=(

3)7)

— +

> best possible rate is ¢ = (ﬁ) (obtained for a = (2(d1+1)) .
r=+o0, {=1).

> Keller-Segel parabolic elliptic (d = 2 : global solution x < 8,
blow up in finite time otherwise).

> we get the above rate for any value of x;
» the result holds even if the PDE explodes in finite time (x > 8x).
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Applications

» Coulomb-type kernels (like Biot-Savart in d = 2, Riesz with
s=d—2),
1

> convergence happens for a < 5(a=1) d=2=a=( );
1

3
— +
> best possible rate is ¢ = (ﬁ) (obtained for a = (2(d+1)) .
r=+o0, {=1).

> Keller-Segel parabolic elliptic (d = 2 : global solution x < 8,
blow up in finite time otherwise).

> we get the above rate for any value of x;
» the result holds even if the PDE explodes in finite time (x > 8x).

» The Riesz kernels with s > d — 2 do not satisfy (Hg)(iii).
However, by imposing more regularity on the initial conditions and

smaller values of «, we get a rate of convergence for singular Riesz
kernels with s € (d — 2,d — 1).
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Sketch of proof

» Derive the SPDE satisfied by the mollified empirical measure u” in

its mild form

ur (z) = e ud ( /v D8N VN (@ — YF(K *ul () ds
1 _ . .
_NZ/ TIATY N (o — XENY AWl x e RY

applying Itd's formula to Gy yw (s,2 — ) := =2V N (2 — ) on
each particle between 0 and ¢ for x and ¢ fixed. (sum up, 3
rearrange..)
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Sketch of proof

» Derive the SPDE satisfied by the mollified empirical measure u” in
its mild form

ur (z) = e ud ( /v D8N VN (@ — YF(K *ul () ds
1 (=)Ao Ny xisNy  grisi d
NZ/Oe VN (- XNy AWl zeR

applying Itd's formula to Gy yw (s,2 — ) := =2V N (2 — ) on
each particle between 0 and ¢ for x and ¢ fixed. (sum up, 3
rearrange..)

» For g > 1 establish that

sup E
NeEN*

4 <2
t€[0,T]

(using the above mild form and combining Gronwall lemma and
"martingale" estimate )
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Decompose ||ulY — ug| p1qz- into several terms (u is the unique sn of
the mild equation with cut-off):

up (@) = ue(x) = e (u)’ — uo)(2) + Eu(x) — M ()

t
+/ V.eltm9a (usF(K wus) — ul F(K * uiv)) (z) ds,
0
where we have set

Ei(z) := /Ot V- e(t_s)Amév, VN(JC —) (F(K * Uiv(m)) - F(K * Uf()))) ds,

MY (x) = % Z/ ATV (g — XY AW (1)
=170

15 /28



Pivoting in the last term and using that

[| K * f||L°C(Rd) < Ck,d HfHleLr(Rd)

t
1
Huiv - utHleLr(Rd) < ||Uév - UOHleLr(Rd) + C/o ﬁllﬂ - uSHLlﬁL"'(Rd)dS

N
+ ||Et||L1r1L7‘(Rd) + HMt ”LlﬂL"(Rd)'

Using the Gronwall lemma for convolution integrals, we obtain

N N
o™ = ully 1y < C (b = wollaoir ey "
2
N
HIBl, 1oy + 1MV ez gy )

It remains to control the moments of || E|; pa(ray and ||[M ||, pewa) for
g € {1,r}. This is where the two expression in the definition of the speed

p appear.
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Observe that (positivity of F', heat kernel)

Bl o <€ [ —(/ W VN )
(t—s)z \Jra

|[F (K () = F(K (@)

Q=

ds.

¥ dz)

F Lipschitz and the ¢-Hélder continuity of K «u™ give

1

LTS P P— q
1 Etll aray < C/ %(R) (/Rd(,uiv,VN(m — )= x|c)qd$> ds.
—s

Since V is compactly supported (wlog, assume supp(V') C By ), we
have that V¥ (z —y) |y — z|° < N"*¢V¥(z —y). Thus

c [t o1 N N
1 B¢l Lo ray < Nac rllus [ L1nrr@a)llus |peay ds

o (t—s)2

c t 1
Nac T ||u£\]|‘ilmL7‘(Rd) ds,
o (t— 3)2

IN
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Apply Hélder's inequality with p = 2 to obtain

2
c ([ e :
Y ds(/a—sr ds) (/ . ds) .
LaR?) = Nac 0 o LINL™(R?)

Finally, we have from Jensen's inequality that for m > 3,

N

C t " m
Bl s ey < o (] B (10 e )

and the bound uniform bounds on uY permits to conclude that

C
L) S ac (3)

1B, Lo (ray|

This inequality immediately extends to 1 < m < 3.
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Sketch of proof

Main issue: control the moments of
1Lt
t—s)A\ N 7 7
§1<1¥||NZI/O e=9ayy (Xs*')deHLlnLr(Rdy

» Not a martingale, fix the time in the heat operator and it becomes

one;
» to control the L' N L™(R?) norm, use stochastic integration
techniques in infinite-dimensional spaces [van Neerven et al.’07];

» use Garsia-Rodemich-Rumsey’s lemma to put the sup inside.

Note that this is where the limitation on « (H,) arises.
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Overview

The nonlinear process and propagation of chaos



The nonlinear process

Definition
Assume (H)(i)-(ii), up € L* N L™ (R4) with » > max(p’, q) and
consider the canonical space C([0, T]; R%) equipped with its canonical
filtration. We say that Q € P(C([0, T]; R?)) solves the nonlinear
martingale problem associated to (NLSDE) if:

(i) Qo = uo;

(i) Forany t € (0,T], Q; has density ¢; and ¢ € C([0,T]; L' N L™ (R%));
(iii) For any f € CZ(R), the process (My)ic(o,) defined as

M, = f(w,) — f(wo) — /Ot [Af(ws) F VS (ws) - (K qs(ws))] ds

is a Q-martingale, where (w;);c[o,r] denotes the canonical process.

v
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The nonlinear process

Proposition

Let T < Tynax- Then the martingale problem related to (NLSDE) is
well-posed.
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The nonlinear process

Proposition
Let T < Tynax- Then the martingale problem related to (NLSDE) is
well-posed.

= the McKean-Vlasov equation (NLSDE) admits a unique weak solution
X. Combined with the convergence theorem, it comes:

max  sup X} — X}| <CN~9¢ VN eN*

ie{l,....N} t€[0,T] Lm(Q)
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Propagation of chaos

Theorem

Same hypotheses as in previous Theorem + Assume that { X}, i € N}

are identically distributed and that (u}), ) 5 (ug, p), Vo € Cp(RY).
Then

w3,
where Q is the law of the solution of (NLSDE).
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Propagation of chaos

Theorem

Same hypotheses as in previous Theorem + Assume that { X}, i € N}

are identically distributed and that (u}), ) 5 (ug, p), Vo € Cp(RY).
Then

w3,
where Q is the law of the solution of (NLSDE).

Example: 2d Keller-Segel parabolic-elliptic equation. We obtain local
existence and uniqueness of (NLSDE) for all values of x and the
propagation of chaos towards it.
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Sketch of proof

Usual strategy:
(1) Consider the nonlinear MP with cutoff;

(2) Prove the tightness of the family IIV := £(1”) in the space
P(P(C([0,T);RY))):;

(3) Prove that any limit point II> of IIV is dg.
(4) Lift the cutoff.
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Sketch of proof

Usual strategy:

(1) Consider the nonlinear MP with cutoff;

(2) Prove the tightness of the family IIV := £(1”) in the space
P(P(C((0,T}; RY))

(3) Prove that any limit point II> of IIV is dg.

(4) Lift the cutoff.

(3) is the most technical part:
» work in fact on

H :=P(C([0,T);RY)) x C([0, T]; L* N L™ (R))

with IIV = £(uN, u®) (as in [Méléard & Roelly’87)).

» introduce a quadratic functional T" on #, which depends on the form
of the martingale problem.

» use the convergence of IV to II*° to prove that ' =0 [I-a.e.
This is where 1V and the particle system appear.

> deduce that the first coordinate of II°® solves the nonlinear MP
(with cutoff).
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Recent progress

» In a recent work [Guo & Luo '21] extend our method to particles
with common noise:

dXp™ = Vs (K p) ) (XN )dt + V2r Yy ol (XN )dw,
k

and quantify its convergence (in a two step procedure) to

dwu(t,z) = vAu(t,x) — V- (u(t,z) K %, u(t, x))

for a class of kernels such as repulsive Riesz kernels for s € [0,d — 2].

> Rate of convergence for the IPS without cutoff, working on the torus:

limsup N¢~¢ sup [|ul’ — Ut||Lp(ray < X a.s.
N—+o0 te[0,T]

» Extension to Burgers.
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Some next steps

» Numerical applications : use our result to quantify the convergence
of a scheme coming from the moderately interacting particles.

» Treat non-Markovian particle systems : e.g. the parabolic-parabolic

Keller-Segel model.

» Improve the constraint on a by changing the functional space.
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