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Nonlinear Fokker-Planck equation with singular interaction

I We study on [0, T )× Rd{
∂tu(t, x) = ∆u(t, x)−∇ ·

(
u(t, x) K ∗x u(t, x)

)
,

u(0, x) = u0(x),
(NLFP)

with K locally integrable and singular at 0.

I Our main interest : stochastic particle approximation of (NLFP).

I Why?
I Macroscopic to microscopic description (and back!);
I Numerical schemes...
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Classical approach: mean-field interactions

I (NLFP) is seen as the FP equation for the non-linear process{
dXt = K ∗ ut(Xt)dt+

√
2dWt,

L(Xt) = ut.
(NLSDE)

I Particle system in mean-field interaction :

dXi,N
t =

1

N

N∑
j=1

K(Xi,N
t −Xj,N

t ) +
√

2dW i,N
t (PS)

and its empirical measure µN· = 1
N

∑N
i=1 δXi,N

·
.

I Propagation of chaos : convergence in law of µN in P(C) towards
the law of X.

I Issues: K singular → wellposedness of (PS), (NLSDE) and the
propagation of chaos?

I Probabilistic approach to singular interactions:
I Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...
I studied by Bossy, Calderoni, Cattiaux, Fournier, Hauray, Jabin,

Jourdain, Méléard, Mischler, Osada, Pulvirenti, Talay, ...
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Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
I existence of (PS) is unknown ;
I or existence ok, but convergence unknown.

Moderately interacting particles :

dXi,N
t = F

(
V N ∗ (K ∗ µNt )(Xi,N

t )
)
dt+

√
2dW i,N

t ,

where:
I V N (x) = NdαV (Nαx), α > 0 and V a regular density;
I F a smooth cut-off.

I Some references : [Oelschläger’85], [Méléard & Roelly’87],
[Jourdain & Méléard’98]

→ A semigroup approach was recently developed by Flandoli, Olivera and their
collaborators to get uniform (non-quantitative) convergence of V N ∗ µN
towards a mild solution to:
FKPP, 2d Navier-Stokes equations, PDE-ODE system related to aggregation
phenomena.

5 / 28



Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
I existence of (PS) is unknown ;
I or existence ok, but convergence unknown.

Moderately interacting particles :

dXi,N
t = F

(
V N ∗ (K ∗ µNt )(Xi,N

t )
)
dt+

√
2dW i,N

t ,

where:
I V N (x) = NdαV (Nαx), α > 0 and V a regular density;
I F a smooth cut-off.

I Some references : [Oelschläger’85], [Méléard & Roelly’87],
[Jourdain & Méléard’98]

→ A semigroup approach was recently developed by Flandoli, Olivera and their
collaborators to get uniform (non-quantitative) convergence of V N ∗ µN
towards a mild solution to:
FKPP, 2d Navier-Stokes equations, PDE-ODE system related to aggregation
phenomena.

5 / 28



Another viewpoint: moderate interaction

Motivated by singular attractive kernels for which either:
I existence of (PS) is unknown ;
I or existence ok, but convergence unknown.

Moderately interacting particles :

dXi,N
t = F

(
V N ∗ (K ∗ µNt )(Xi,N

t )
)
dt+

√
2dW i,N

t ,

where:
I V N (x) = NdαV (Nαx), α > 0 and V a regular density;
I F a smooth cut-off.

I Some references : [Oelschläger’85], [Méléard & Roelly’87],
[Jourdain & Méléard’98]

→ A semigroup approach was recently developed by Flandoli, Olivera and their
collaborators to get uniform (non-quantitative) convergence of V N ∗ µN
towards a mild solution to:
FKPP, 2d Navier-Stokes equations, PDE-ODE system related to aggregation
phenomena.

5 / 28



Our main objectives

What assumptions on K and what suitable functional framework for
(NLFP) so the following holds?

I Convergence of {µNt = 1
N

∑N
i=1 δXi,N

t
, t ∈ [0, T ]} to the solution

(NLFP) when N →∞:
I which range of α?
I what is the rate of convergence ?

I Well-posedness of (NLSDE).
I Propagation of chaos towards (NLSDE) (without the cut-off and the

mollifier)
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Which kernels?

A typical example in dimension d ≥ 2 is the family of Riesz kernels:

Ks(x) = ±∇Vs(x)

where

Vs(x) :=

{
|x|−s if s ∈ (0, d− 1)

− log |x| if s = 0
, x ∈ Rd.

Examples:
I Coulomb interactions: Ks, with s = d− 2 (d ≥ 3);

I 2d Navier-Stokes equation (vorticity): K(x) = x⊥

|x|2 ;

I Parabolic-elliptic Keller-Segel model: K(x) = −χ x
|x|d (attractive...);

I Some attractive-repulsive kernels.
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Assumptions on K and α

(HK):
(i) K ∈ Lp(B1), for some p ∈ [1,+∞];
(ii) K ∈ Lq(Bc1), for some q ∈ [1,+∞];
(iii) There exists r ≥ max(p′, q′) and ζ ∈ (0, 1] such that:

Nζ(K ∗ f) . ‖f‖L1∩Lr(Rd), ∀f ∈ L1 ∩ Lr(Rd).
(Nζ the Hölder seminorm of parameter ζ.)

(Hα): α and r satisfy

0 < α <
1

d+ 2d( 1
2 −

1
r ) ∨ 0

.

I Notice here that for f ∈ L1 ∩ Lr(Rd) one has

‖K ∗ f‖L∞(Rd) ≤ CK,d ‖f‖L1∩Lr(Rd).
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Convergence of the mollified empirical measure

Assume (always today) that u0 ≥ 0 and
∫
Rd u0 = 1.

Proposition
Let K satisfying (HK)(i)-(ii), u0 ∈ L1 ∩ Lr(Rd) with r ≥ max(p′, q′).
There exists T > 0 and a unique u : [0, T ]× Rd → R s.t.

u ∈ C([0, T ];L1 ∩ Lr(Rd))

and

ut = et∆u0 −
∫ t

0

∇ · (e(t−s)∆(usK ∗ us)) ds, 0 ≤ t ≤ T.

Denote by Tmax the maximal existence time.
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Convergence of the mollified empirical measure

Theorem ([O.-R.-T. Ann Sc Norm Super Pisa’21+])

Let T < Tmax and assume (HK) and (Hα). Under suitable conditions on
the initial conditions, we have for {uNt = V N ∗ µNt , t ∈ [0, T ]}N∈N :
∀ε > 0 and ∀m ≥ 1,∥∥‖uN − u‖T,L1∩Lr(Rd)

∥∥
Lm(Ω)

.
∥∥‖uN0 − u0‖L1∩Lr(Rd)

∥∥
Lm(Ω)

+N−%+ε,

where

% = min

(
αζ,

1

2

(
1− α(d+ d(1− 2

r
) ∨ 0)

))
.
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Convergence of the mollified empirical measure

Without the cutoff F in the drift of the particles, we get:

Corollary

For any ε ∈ (0, %), any η > 0 and any m ≥ 1,

P
(
‖uNt − ut‖T,L1∩Lr(Rd) ≥ η

)
.

1

ηm

(∥∥‖uN0 − u0‖L1∩Lr(Rd)

∥∥
Lm(Ω)

+N−%+ε
)m

.
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Some consequences and remarks

I Same rate for the genuine empirical measure of (PS)∥∥∥∥ sup
t∈[0,T ]

‖µNt − ut‖0
∥∥∥∥
Lm(Ω)

≤ C N−%+ε,

where ‖ · ‖0 denotes the Kantorovich-Rubinstein metric

I The rate in the previous results holds almost surely.

I Cannot expect here a N−
1
2 rate of convergence because of the short

range interactions : “best possible” N−α.
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Applications

I Coulomb-type kernels (like Biot-Savart in d = 2, Riesz with
s = d− 2),
I convergence happens for α < 1

2(d−1)
(d = 2⇒ α = ( 1

2
)−);

I best possible rate is % =
(

1
2(d+1)

)−
(obtained for α =

(
1

2(d+1)

)+

,
r = +∞, ζ = 1).

I Keller-Segel parabolic elliptic (d = 2 : global solution χ < 8π,
blow up in finite time otherwise).
I we get the above rate for any value of χ;
I the result holds even if the PDE explodes in finite time (χ > 8π).

I The Riesz kernels with s > d− 2 do not satisfy (HK)(iii).
However, by imposing more regularity on the initial conditions and
smaller values of α, we get a rate of convergence for singular Riesz
kernels with s ∈ (d− 2, d− 1).
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Sketch of proof

I Derive the SPDE satisfied by the mollified empirical measure uN in
its mild form

uNt (x) = et∆uN0 (x)−
∫ t

0

∇ · e(t−s)∆〈µNs , V N (x− ·)F
(
K ∗ uNs (·)

)
〉 ds

− 1

N

N∑
i=1

∫ t

0

e(t−s)∆∇V N (x−Xi,N
s ) · dW i

s , x ∈ Rd

applying Itô’s formula to Gt,V N (s, x− ·) := e(t−s)∆V N (x− ·) on
each particle between 0 and t for x and t fixed. (sum up, 1

N ,
rearrange..)

I For q ≥ 1 establish that

sup
N∈N∗

E

[
sup
t∈[0,T ]

∥∥uNt ∥∥qLr(Rd)

]
<∞.

(using the above mild form and combining Gronwall lemma and
"martingale" estimate )
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Decompose ‖uNt − ut‖L1∩Lr into several terms (u is the unique sln of
the mild equation with cut-off):

uNt (x)− ut(x) = et∆(uN0 − u0)(x) + Et(x)−MN
t (x)

+

∫ t

0

∇ · e(t−s)∆
(
usF (K ∗ us)− uNs F (K ∗ uNs )

)
(x) ds,

where we have set

Et(x) :=

∫ t

0

∇ · e(t−s)∆〈µNs , V N (x− ·)
(
F
(
K ∗ uNs (x)

)
− F

(
K ∗ uNs (·)

))
〉 ds,

MN
t (x) :=

1

N

N∑
i=1

∫ t

0

e(t−s)∆∇V N (x−Xi,N
s ) · dW i

s . (1)
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Pivoting in the last term and using that

‖K ∗ f‖L∞(Rd) ≤ CK,d ‖f‖L1∩Lr(Rd)

‖uNt − ut‖L1∩Lr(Rd) ≤ ‖u
N
0 − u0‖L1∩Lr(Rd) + C

∫ t

0

1√
t− s

‖uNs − us‖L1∩Lr(Rd)ds

+ ‖Et‖L1∩Lr(Rd) + ‖M
N
t ‖L1∩Lr(Rd).

Using the Grönwall lemma for convolution integrals, we obtain

‖uN − u‖t,L1∩Lr(Rd) ≤ C
(
‖uN0 − u0‖L1∩Lr(Rd)

+‖E‖t,L1∩Lr(Rd) + ‖M
N‖t,L1∩Lr(Rd)

)
.

(2)

It remains to control the moments of ‖E‖t,Lq(Rd) and ‖M‖t,Lq(Rd) for
q ∈ {1, r}. This is where the two expression in the definition of the speed
ρ appear.
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Observe that (positivity of F , heat kernel)

‖Et‖Lq(Rd) ≤ C
∫ t

0

1

(t− s) 1
2

(∫
Rd

〈µNs , V N (x− ·)

∣∣∣F (K ∗ uNs (·)
)
− F

(
K ∗ uNs (x)

)∣∣∣〉q dx) 1
q
ds.

F Lipschitz and the ζ-Hölder continuity of K ∗ uN give

‖Et‖Lq(Rd) ≤ C
∫ t

0

‖uNs ‖L1∩Lr(Rd)

(t− s) 1
2

(∫
Rd

〈µNs , V N (x− ·) |· − x|ζ〉q dx
) 1

q

ds.

Since V is compactly supported (wlog, assume supp(V ) ⊂ B1 ), we
have that V N (x− y) |y − x|ζ ≤ N−αζV N (x− y). Thus

‖Et‖Lq(Rd) ≤
C

Nαζ

∫ t

0

1

(t− s) 1
2

‖uNs ‖L1∩Lr(Rd)‖u
N
s ‖Lq(Rd) ds

≤ C

Nαζ

∫ t

0

1

(t− s) 1
2

‖uNs ‖2L1∩Lr(Rd) ds,
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Apply Hölder’s inequality with p = 3
2 to obtain

‖Et‖Lq(Rd) ≤
C

Nαζ

(∫ t

0

(t− s)− 3
4 ds

) 2
3
(∫ t

0

‖uNs ‖6L1∩Lr(Rd) ds

) 1
3

.

Finally, we have from Jensen’s inequality that for m ≥ 3,

∥∥‖E‖t,Lq(Rd)

∥∥
Lm(Ω)

≤ C

Nαζ

(∫ t

0

E
[
‖uNs ‖2mL1∩Lr(Rd)

]
ds

) 1
m

and the bound uniform bounds on uN permits to conclude that∥∥‖E‖t,Lq(Rd)

∥∥
Lm(Ω)

≤ C

Nαζ
. (3)

This inequality immediately extends to 1 ≤ m < 3.
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Sketch of proof

Main issue: control the moments of

sup
t≤T
‖ 1

N

N∑
i=1

∫ t

0

e(t−s)4∇V N (Xi
s − ·)dW i

s‖L1∩Lr(Rd).

I Not a martingale, fix the time in the heat operator and it becomes
one;

I to control the L1 ∩ Lr(Rd) norm, use stochastic integration
techniques in infinite-dimensional spaces [van Neerven et al.’07];

I use Garsia-Rodemich-Rumsey’s lemma to put the sup inside.
Note that this is where the limitation on α (Hα) arises.
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The nonlinear process

Definition
Assume (HK)(i)-(ii), u0 ∈ L1 ∩ Lr(Rd) with r ≥ max(p′, q′) and
consider the canonical space C([0, T ];Rd) equipped with its canonical
filtration. We say that Q ∈ P(C([0, T ];Rd)) solves the nonlinear
martingale problem associated to (NLSDE) if:
(i) Q0 = u0;
(ii) For any t ∈ (0, T ], Qt has density qt and q ∈ C([0, T ];L1 ∩ Lr(Rd));
(iii) For any f ∈ C2

c (Rd), the process (Mt)t∈[0,T ] defined as

Mt := f(wt)− f(w0)−
∫ t

0

[
∆f(ws) +∇f(ws) · (K ∗ qs(ws))

]
ds

is a Q-martingale, where (wt)t∈[0,T ] denotes the canonical process.
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The nonlinear process

Proposition
Let T < Tmax. Then the martingale problem related to (NLSDE) is
well-posed.

⇒ the McKean-Vlasov equation (NLSDE) admits a unique weak solution
X̃. Combined with the convergence theorem, it comes:∥∥∥∥∥ max

i∈{1,...,N}
sup
t∈[0,T ]

|Xi,N
t − X̃i

t |

∥∥∥∥∥
Lm(Ω)

≤ C N−%+ε, ∀N ∈ N∗.
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Propagation of chaos

Theorem
Same hypotheses as in previous Theorem + Assume that {Xi

0, i ∈ N}
are identically distributed and that 〈uN0 , ϕ〉

P→ 〈u0, ϕ〉, ∀ϕ ∈ Cb(Rd).
Then

µN.
(d)→ Q,

where Q is the law of the solution of (NLSDE).

Example: 2d Keller-Segel parabolic-elliptic equation. We obtain local
existence and uniqueness of (NLSDE) for all values of χ and the
propagation of chaos towards it.
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Sketch of proof

Usual strategy:
(1) Consider the nonlinear MP with cutoff;
(2) Prove the tightness of the family ΠN := L(µN ) in the space
P(P(C([0, T ];Rd)));

(3) Prove that any limit point Π∞ of ΠN is δQ.
(4) Lift the cutoff.

(3) is the most technical part:
I work in fact on

H := P(C([0, T ];Rd))× C([0, T ];L1 ∩ Lr(Rd))

with Π̃N = L(µN , uN ) (as in [Méléard & Roelly’87]).
I introduce a quadratic functional Γ on H, which depends on the form

of the martingale problem.
I use the convergence of Π̃N to Π̃∞ to prove that Γ = 0 Π̃∞-a.e.

This is where µN and the particle system appear.
I deduce that the first coordinate of Π̃∞ solves the nonlinear MP

(with cutoff).
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Recent progress

I In a recent work [Guo & Luo ’21] extend our method to particles
with common noise:

dXi,N
t = V ε ∗ (K ∗ µNt )(Xi,N

t )dt+
√

2ν
∑
k

σNk (Xi,N
t )dW k

t ,

and quantify its convergence (in a two step procedure) to

∂tu(t, x) = ν∆u(t, x)−∇ ·
(
u(t, x) K ∗x u(t, x)

)
for a class of kernels such as repulsive Riesz kernels for s ∈ [0, d− 2].

I Rate of convergence for the IPS without cutoff, working on the torus:

lim sup
N→+∞

N%−ε sup
t∈[0,T ]

‖uNt − ut‖Lp(Td) ≤ X a.s.

I Extension to Burgers.
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Some next steps

I Numerical applications : use our result to quantify the convergence
of a scheme coming from the moderately interacting particles.

I Treat non-Markovian particle systems : e.g. the parabolic-parabolic
Keller-Segel model.

I Improve the constraint on α by changing the functional space.
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