
Gradient Flow Structure of the Landau
Equation

Metastability, Mean-Field Particle Systems and Non Linear Pro-
cesses
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Plasma

▶ Plasma is the fourth state of matter - formed by heating a gas at
high temperatures (3,000 - 10,000 K) so electrons in a gas are
separated from nuclei.

▶ Examples include stars, lightning, aurora borealis, interstellar matter,
fluorescent lights, neon signs, etc. . .

▶ Main focus of the ITER project is to produce net energy through
fusion - four times more energy than nuclear, four million times
more than coal, oil, or gas.

▶ ITER members - China, EU, India, Japan, Korea, Russia, and the
US.

▶ First Plasma scheduled for December 2025.
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Figure: KSTAR tokamak plasma image from the National Fusion Research
Institute of Korea
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Landau Equation (written by Landau in 1936 [LP76])

For γ ∈ [−3, 1), evolution of density, f , of plasma modelled by

∂t f = ∇ ·

f

∫
Rd

f∗|v − v∗|γ+2Π[v − v∗](∇ log f −∇∗ log f∗)dv∗︸ ︷︷ ︸
nonlocal nonlinear ‘velocity’

 .

For z ∈ Rd , the matrix Π[z ] is the projection onto {z}⊥

Π[z ] :=

(
Id − z ⊗ z

|z |2

)
.

|v − v∗|γ+2Π[v − v∗] can be singular for negative enough γ and it is
also non-negative semi-definite.
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Landau as a parabolic equation

Repackage the non-linear and non-local (c.f. Gualdani and Guillen
’16-’21) coefficients of Landau

∂t f = ∇ · (ā[f ]∇f − b̄[f ]f ),

with

ā[f ] = a ∗ f =

∫
Rd

|v − v∗|2+γΠ[v − v∗]f (v∗)dv∗ ≳f ⟨v⟩γ ,

and

b̄[f ] = ∇·ā[f ] = −(d−1)

∫
Rd

|v−v∗|γ(v−v∗)f (v∗)dv∗ < +∞ ⇐= f ∈ L
d

γ+1+d

loc .

When γ = −d , then ∇ · b̄[f ] = −Cd f which ‘suggests’ finite-time blow
up from ḟ = f 2??? OPEN - community believes no blow up due to
partial results [GGIV’19, DHJ’20, BGS’21].
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Landau as a stochastic process

As a diffusion equation, we consider solutions f which are probabilities.
Suppose V ∼ f . Then

dV = 2b̄[f ](V )dt + (2ā[f ](V ))
1
2 dBt .

This perspective of Landau has been studied by Fournier, Guérin, Hauray,
Heydecker, and Mouhot. Good progress made for γ ≥ −2 when d = 3.
Partial progress for γ ∈ (−3,−2) and degenerating as γ ↓ −3.
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As a diffusion equation, we consider solutions f which are probabilities.
Suppose V ∼ f . Then

dV = 2b̄[f ](V )dt + (2ā[f ](V ))
1
2 dBt .

This perspective of Landau has been studied by Fournier, Guérin, Hauray,
Heydecker, and Mouhot. Good progress made for γ ≥ −2 when d = 3.
Partial progress for γ ∈ (−3,−2) and degenerating as γ ↓ −3.
Mean-field limit derivation of Landau through interacting particle
system? Consider evolution of N particles V 1, . . . ,V N which satisfy

dV i = 2b̄[µN ](V i )dt + (2ā[µN ](V i ))
1
2 dB i

t , i = 1, . . . ,N,

with µN = 1
N

∑N
j=1 δV j . Done by Fournier and Hauray ’16 for γ > −2.
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Landau as a stochastic process

As a diffusion equation, we consider solutions f which are probabilities.
Suppose V ∼ f . Then

dV = 2b̄[f ](V )dt + (2ā[f ](V ))
1
2 dBt .

This perspective of Landau has been studied by Fournier, Guérin, Hauray,
Heydecker, and Mouhot. Good progress made for γ ≥ −2 when d = 3.
Partial progress for γ ∈ (−3,−2) and degenerating as γ ↓ −3.
The question of (global) uniqueness for the most physically relevant
case γ = −3 is OPEN. Stochastic techniques (coupling method) used by
Fournier and Guérin in 2009 to prove conditional uniqueness.

▶ γ ∈ (−2, 0) - global uniqueness and stability conditional to finite
initial moments and entropy.

▶ γ ∈ (−3,−2] - local uniqueness and stability conditional on initial
Lp, p(γ) > 3/3 + γ.
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Outline

Landau Equation
Literature overview
H-theorem

Preview of Results

Gradient Flow framework
Review of heat equation
Treatment of Landau

Brief discussion on numerics
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Mathematical challenges associated to different values of γ.

▶ γ ∈ (0, 1) corresponds to ‘hard potentials’ (Desvillettes and Villani
[DV00, DV02]).

▶ γ = 0 corresponds to ‘Maxwellian’ molecules (Villani [V98]).

▶ γ = −3 corresponds to ‘Coulomb’ interactions (first global
uniqueness result by Guo [G02] using a perturbative argument).

General uniqueness for γ = −3 is unknown, although Fournier and Guérin
[FG09] have conditional results down to γ > −3 using stochastic
analytic techniques. More recent work due to Fournier and Heydecker
[FH21].
Regularity results by extending DeGiorgi-Nash-Moser in inhomogeneous
case rely on interplay between parabolic and kinetic theory by Golse,
Guérand, Imbert, Loher, Mouhot, Silvestre, Schwab, Vasseur
[GIMV19,IM20,GH15,SS16,GM21, L22].
More results due to Gualdani, Guillen, Alexandre, Arsenev, Buryak,
Strain, Carrapatoso, He, Toscani, Henderson, Snelson, Morimoto, Xu, . . .
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More literature

▶ We want a gradient flow description for the Landau equation
extending the ideas from Erbar and Villani [E16, V98].

▶ Erbar discovered the gradient flow characterisation of the
Boltzmann equation with Maxwellian (bounded, γ = 0) kernels.

▶ The Landau equation can be derived from the Boltzmann equation
through the grazing collision limit [DL92, D92].

▶ ‘The lack of gradient flow structure contributes to the mathematical
difficulty of the Boltzmann equation.’ - Villani [V02].

May 17, 2022 Gradient flow structures in kinetic theory
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H-theorem

H(f ) =
∫
f log f is a Lyapunov functional for Landau. Using log f as a

test function gives

H(ft)−H(f0) =

−
∫ t

0

1

2

∫∫
R2d

ff∗|v − v∗|γ+2|Π[v − v∗](∇ log f −∇∗ log f∗)|2dv∗dv︸ ︷︷ ︸
=:DL(f )≥0

dt.
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∫
f log f is a Lyapunov functional for Landau. Using log f as a

test function gives

H(ft)−H(f0) =

−
∫ t

0

1

2

∫∫
R2d

ff∗|v − v∗|γ+2|Π[v − v∗](∇ log f −∇∗ log f∗)|2dv∗dv︸ ︷︷ ︸
=:DL(f )≥0

dt.

We interpret this entropy-dissipation equality as a steepest gradient
descent of H under the flow of Landau - extend notion of H-solutions by
Villani [V98].

∂t f = −∇dLH(f ), for some metric dL.
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0

1

2
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R2d

ff∗|v − v∗|γ+2|Π[v − v∗](∇ log f −∇∗ log f∗)|2dv∗dv︸ ︷︷ ︸
=:DL(f )≥0

dt.

Desvillettes proved the functional inequality [D15, D16]∫
⟨v⟩γ |∇f |2

f
+

∫
⟨v⟩γ |v ×∇f |2

f
≤ C (DL(f ) + 1),

C > 0 depends only on bounds for∫
⟨v⟩2 f , H(f ).
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Preview of Results from CDDW20+

Theorem (There is a ‘good’ metric dL)
There exists a (pseudo)-metric dL on the space of probability measures
with bounded second moment, P2(Rd) such that

▶ dL metrises a complete topology

▶ dL-convergent (resp. bounded) sequences are weakly convergent
(resp. compact).

▶ (µ0, µ1) 7→ dL(µ0, µ1) is weakly lower semicontinuous.

▶ dL induces a geodesic space.

We define gradient flows of H with respect to dL to be curves ft satisfying

H(ft)−H(f0) = −1

2

∫ t

0

|ḟ |2dL(s)ds −
1

2

∫ t

0

DL(fs)ds.

May 17, 2022 Gradient flow structures in kinetic theory
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Preview of results from CDDW20+ continued

Theorem (Landau Gradient flow for a regularised problem)
For a specific regularisation of the Landau equation [CHWW20], gradient
flows of a regularised Boltzmann entropy with respect to dL exist and
all gradient flows are equivalent to the usual notion of weak solutions in
all dimensions d ≥ 3 and γ ∈ [−4, 0].

For a regularisation parameter ϵ > 0, these curves satisfy

Hϵ(ft)−Hϵ(f0) = −1

2

∫ t

0

|ḟ |2dL(s)ds −
1

2

∫ t

0

Dϵ
L(fs)ds.
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Preview of Results from CDDW20+ continued

Theorem (Landau gradient flow)
Fix d = 3 and γ ∈ (−3, 0]. All H-solutions [V98] ft defined on [0,T ]
subject to the assumptions;

▶ H(f ) ∈ L∞t ,

▶ DL(f ) ∈ L1t ,

▶ there exists p(γ) ∈ [1,∞] such that

(1 + |v |2)1−
γ
2 ft(v) ∈ L∞t (0,T ; L1v ∩ Lp(γ)v (R3)),

are equivalent to gradient flows of H with respect to dL.

The exponent p(γ) → ∞+ as γ ↓ −3.
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H-theorem for the heat equation

Heat equation may be written as gradient flow of H with respect to the
2-Wasserstein distance [JKO98]

∂tρ = −∇W2H(ρ) = ∇ ·
(
ρ∇δH

δρ

)
,

δH
δρ

= log ρ.

The entropy-dissipation of heat flow reads

H(ρt) +

∫ t

0

∫
Rd

ρ|∇ log ρ|2dx︸ ︷︷ ︸
=:Dh(ρ)

dt = H(ρ0).

May 17, 2022 Gradient flow structures in kinetic theory



17/31

Dynamic Wasserstein distance

The Benamou-Brenier formulation [BB00] of 2-Wasserstein distance is

W 2
2 (f0, fT ) = inf

(f ,M)

{
T

∫ T

0

∫
Rd

|M|2

f
dxdt

∣∣∣∣ ∂t f +∇ ·M = 0
f (0) = f0, f (T ) = fT

}
.

M = −f∇ log f (= −∇f ) is a candidate flux when ft and ft+∆t are points
along the heat semigroup

W 2
2 (ft , ft+∆t) ≤ ∆t

∫ t+∆t

t

Dh(fs)ds, |ḟ |2W2
(t)

!
= Dh(ft).

Extend this idea for Landau; construct dL and prove

|ḟ |2dL(t) = DL(ft).

May 17, 2022 Gradient flow structures in kinetic theory
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New ‘differential geometric’ structure

Recall

Dh(f ) =

∫
Rd

f |∇ log f |2dx

DL(f ) =
1

2

∫∫
R2d

ff∗|v − v∗|2+γ |Π[v − v∗](∇ log f −∇∗ log f∗)|2dv∗dv .

Define a differential operator for ϕ = ϕ(v)

[∇̃ϕ](v , v∗) := |v − v∗|1+
γ
2 Π[v − v∗](∇ϕ−∇∗ϕ∗),

so that

DL(f ) =
1

2

∫∫
R2d

ff∗|∇̃ log f |2dv∗dv .
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γ
2 Π[v − v∗](∇ϕ−∇∗ϕ∗),

so that

DL(f ) =
1

2

∫∫
R2d

ff∗|∇̃ log f |2dv∗dv .

May 17, 2022 Gradient flow structures in kinetic theory



19/31

Dynamic Landau distance

Recall

W 2
2 (f0, f1) = inf

{∫ 1

0

∫
Rd

|M|2

f
dxdt

∣∣∣∣ ∂t f +∇ ·M = 0
f (0) = f0, f (1) = f1

}
.

We use now (the adjoint of) ∇̃ in the actual definition

d2
L(f0, f1) := inf

{
1

2

∫ 1

0

∫∫
R2d

|M|2

ff∗
dv∗dvdt

∣∣∣∣ ∂t f +
1
2∇̃ ·M = 0

f (0) = f0, f (1) = f1

}
.

Now if f0 and f1 are evaluations of solutions to the Landau equation at
t = 0, 1, then M = −ff∗∇̃ log f is a candidate flux with

|ḟ |2dL(t) ≤ DL(ft).
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Proof that dL is a good metric

Apply arguments from Ambrosio, Gigli, Savaré and Dolbeault, Nazaret,
Savaré [AGS08, DNS09]. The functional to be infimised (minimisers
exist) in dL is

1

2

∫ 1

0

∫∫
R2d

|M|2

ff∗
dv∗dvdt.

The integrand function takes the form

(x , y) ∈ Rd × (0,∞) 7→ 1

2

|x |2

y
is jointly convex.

Calculus of variations + adaptation to gradient flows [DNS09] yield nice
properties of dL.
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Gradient flows ⇐⇒ H-solutions

Key ingredient is chain rule for ∂t f +
1
2∇̃ ·M = 0 which is formally

computed

d

dt
H(ft) =

∫
Rd

∂t f log f = −1

2

∫
Rd

∇̃ ·M log f =
1

2

∫∫
R2d

∇̃ log f ·M =

1

2

∫∫
R2d

∇̃δH
δf

·M

H-solutions =⇒ gradient flows: Set M = −ff∗∇̃ log f so that

d

dt
H(ft) = −1

2

∫∫
R2d

ff∗|∇̃ log f |2 = −1

2
DL(ft)−

1

4

∫∫
R2d

|M|2

ff∗

≤ −1

2
DL(ft)−

1

2
|ḟ |2dL(t).

This inequality is sufficient.
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Gradient flow =⇒ H-solution

Take M such that ∂t f +
1
2∇̃ ·M = 0 and

1

2

∫∫
R2d

|M|2

ff∗
= |ḟ |2dL .

The chain rule implies the inequality

H(fT )−H(f0) =
1

2

∫ T

0

∫∫
R2d

∇̃ log f ·M

≥ −1

2

∫ T

0

∫∫
R2d

(
1

2
ff∗|∇̃ log f |2 + 1

2

|M|2

ff∗

)
= −1

2

∫ T

0

DL(f )−
1

2

∫ T

0

|ḟ |2dL(t).

But all inequalities have to be equalities so Young’s/Cauchy-Schwarz
implies co-linearity

M = −ff∗∇̃ log f .
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Structure of regularised entropy

We consider, for ϵ > 0,

Hϵ(f ) := H(f ∗G ϵ) =

∫
[f ∗G ϵ] log [f ∗ G ϵ] , G ϵ(v) = Cd,ϵ exp(−|v |/ϵ).

Easier to establish chain rule with this regularisation

d

dt
Hϵ(ft) =

1

2

∫∫
R2d

∇̃δHϵ

δf
·M.

Need estimates uniform in ϵ > 0 for∣∣∣∣12
∫∫

R2d

∇̃δHϵ

δf
·M
∣∣∣∣ ≤ √

2

2

(
1

2

∫∫
R2d

ff∗

∣∣∣∣∇̃δHϵ

δf

∣∣∣∣2
) 1

2

+

√
2

2

(
1

2

∫∫
R2d

|M|2

ff∗

) 1
2

The terms are Dϵ
L(f ) (difficult) and dL (easy).
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Convergence of dissipations as ϵ ↓ 0

For a fixed f , we need to establish Dϵ
L(f ) → DL(f ) given DL(f ) < +∞,

or in full detail∫∫
R2d

ff∗|v − v∗|2+γ |Π[v − v∗](∇G ϵ∗ log[f ∗G ϵ](v)−∇G ϵ∗ log[f ∗G ϵ](v∗))|2

↓ as ϵ ↓ 0∫∫
R2d

ff∗|v − v∗|2+γ |Π[v − v∗](∇ log f −∇∗ log f∗)|2.

Expand the square to effectively estimate two distinct terms∫
f∗

∫
f |v − v∗|γ |v ×∇G ϵ∗ log[f ∗G ϵ](v)|2dvdv∗

and ∫
f∗|v∗|2

∫
f |v − v∗|γ |∇G ϵ∗ log[f ∗G ϵ](v)|2dvdv∗.
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Use of Extended Dominated Convergence

We do not have an integrable majorant directly, but we only care that the
integral converges.
Idea: Suppose Iϵ(v) = A(v)(B ∗ G ϵ)(v) is a sequence and we want to
show ∫

Iϵ →
∫

AB.

Notice ∫
Iϵ =

∫
A(B ∗ G ϵ) =

∫
(A ∗ G ϵ)B

It is enough to show that (A ∗ G ϵ)(v)B(v) has an integrable majorant
even if we have no bounds for A(B ∗ G ϵ).
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Commuting G ϵ∗

Apply (many many many times) an extended Dominated Convergence
Theorem after shuffling G ϵ∗, for example∫

f∗|v∗|2
∫

f |v − v∗|γ |∇G ϵ∗ log[f ∗G ϵ](v)|2dvdv∗ ≤ . . .

≤ Cf ,γ

∫
[f ∗ G ϵ] ⟨v⟩γ |∇ log[f ∗ G ϵ]|2.

Recognise Jensen’s inequality

[f ∗ G ϵ]|∇ log[f ∗ G ϵ]|2 = |∇[f ∗ G ϵ]|2

[f ∗ G ϵ]
≤ G ϵ ∗

[
|∇f |2

f

]
.

Boundedness of Fisher information-type term from Desvillettes [D15,
D16] ∫

⟨v⟩γ |∇f |2

f
+

∫
⟨v⟩γ |v ×∇f |2

f
≤ C (DL(f ) + 1).
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Landau Equation
Literature overview
H-theorem

Preview of Results

Gradient Flow framework
Review of heat equation
Treatment of Landau

Brief discussion on numerics
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Another motivation for regularisation

The dL-gradient flow of Hϵ is the PDE ∂t f =

∇·
(
f

∫
Rd

f∗|v − v∗|γ+2Π[v − v∗](G
ϵ∗∇ log(G ϵ∗f )− G ϵ∗∇∗ log(G

ϵ∗f∗))dv∗
)
.

This PDE inherits conservation of mass, momentum, and energy, as well
as a regularised H-theorem. Destroying the parabolicity allows for a
numerical particle method as investigated in Carrillo, Craig, Patacchini
’19 (and also recently by Craig et al.).
This equation (with a different mollifier) was the focus of Carrillo, Hu,
Wang, Wu ’20.
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Motivation from numerics (Carrillo, Hu, Wang, Wu, ’20)

Landau is parabolic so the regularised entropy Hϵ is needed for particle
solutions

f (t, v) ∼ µN(t, v) :=
1

N

N∑
i=1

δv i (t)(v).

Obtain an interacting particle system of ODEs for i = 1, . . . ,N

v̇ i (t) =

1

N

N∑
j=1

|v i − v j |2+γΠ[v i − v j ](∇G ϵ ∗ log[µN ∗ G ϵ](v j)−∇G ϵ ∗ log[µN ∗ G ϵ](v i )).

We tested our method in 3D also for Coulomb molecules (γ = −3) and
observed heuristic (almost) second order accuracy.
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Theorem (Existence and equivalence for ϵ > 0 (CDDW20+))
Fix ϵ > 0, an interval [0,T ], and γ ∈ [−4, 0]. Then there exists a
gradient flow of Hϵ with respect to dL in P2(Rd). Furthermore, all
weak solutions of the regularised Landau equation are equivalent to
gradient flows.

Proof.
Existence handled by JKO variational scheme [JKO98] given initial
µ0 ∈ P2(Rd) and time step τ > 0

ντ0 := µ0, ντn ∈ argminλ∈P2

[
Hϵ(λ) +

1

2τ
dL

2(ντn−1, λ)

]
, n ∈ N.

Equivalence handled by chain rule

d

dt
Hϵ(f ) =

1

2

∫∫
R2d

∇̃δHϵ

δf
·M, given ∂t f +

1

2
∇̃ ·M = 0.
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Concluding remarks

▶ Provided a gradient flow description of Landau equation for soft
potentials extending Erbar’s treatment of Boltzmann for bounded
potentials.

▶ Initiated gradient flow theory analysis of numerical experiments for
ϵ-regularised problem.

▶ Introduced a new minimising movement procedure in the spirit of
JKO for Landau.

Some future endeavours:

▶ Extend gradient flow formulation to γ = −3.

▶ Leverage gradient flow theory (e.g. generalised geodesic convexity)
to prove uniqueness for γ = −3.

▶ Understand grazing collision limit in terms of gradient flows (e.g.
using Γ-convergence). - Published in Nonlinear Analysis ’22 ✓!

▶ Prove rigorous approximation of ϵ-regularised problem to Landau. -
Convergence of particle method in preparation (for a fixed ϵ > 0).
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