Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary

Antonio Gaudiello

Universitá degli Studi di Napoli Federico II, Italy

Nineth International Workshop on the Multiscale Modeling and Methods,
Saint-Etienne, France, June 4, 2019

Domain Ω_{ε} with highly rough boundary

$$
\left\{\begin{array}{l}
\Omega_{\varepsilon}^{a}=\bigcup_{\left\{k \in \mathbb{Z}^{N-1}: \varepsilon \omega+\varepsilon k \subset \subset \Omega^{\prime}\right\}}(\varepsilon \omega+\varepsilon k) \times\left[0, I^{a}[,\right. \\
\Sigma_{\varepsilon}^{a}=\bigcup_{\left\{k \in \mathbb{Z}^{N-1}: \varepsilon \omega+\varepsilon k \subset \subset \Omega^{\prime}\right\}}(\varepsilon \omega+\varepsilon k) \times\left\{I^{a}\right\}, \\
\left.\Sigma_{\varepsilon}^{a, l a t}=\bigcup_{\left\{k \in \mathbb{Z}^{N-1}: \varepsilon \omega+\varepsilon k \subset \subset \Omega^{\prime}\right\}}(\varepsilon \partial \omega+\varepsilon k) \times\right] 0, I^{a}[, \\
\left.\Omega^{b}=\Omega^{\prime} \times\right]-I^{b}, 0\left[, \quad \Omega_{\varepsilon}=\Omega_{\varepsilon}^{a} \cup \Omega^{b},\right. \\
\left.\Omega^{a}=\Omega^{\prime} \times\right] 0, I^{a}\left[, \quad \Omega=\Omega^{\prime} \times\right]-I^{b}, I^{a}[, \\
\Sigma^{0}=\Omega^{\prime} \times\{0\}, \quad \Sigma^{a}=\Omega^{\prime} \times\left\{I^{a}\right\},
\end{array}\right.
$$

where $N \in \mathbb{N} \backslash\{1\}$,

$$
\omega \subset \subset] 0,1\left[^{N-1} \text { and } \Omega^{\prime} \subset \mathbb{R}^{N-1}\right.
$$

are two connected bounded open sets with Lipschitz boundary, $\left.I^{a}, I^{b} \in\right] 0,+\infty[$, and

$$
\{\varepsilon\} \subset] 0,1[
$$

Ω
$\chi_{\Omega_{\varepsilon}^{a}} \rightharpoonup\left|\omega^{\prime}\right|$ weakly-star in $L^{\infty}\left(\Omega^{a}\right)$, as $\varepsilon \rightarrow 0$.

Some motivations

- The denticles on the skin of the shark create tiny vortices that reduce drag to make swimming more efficient. They also allow the shark to swim silently.

Similarly, racing boats present denticles under the hydrofoil hull and racing cars have serrated spoiler.

- Sensors used in automotive applications (ABS, ESP, Airbags, etc.) have a comb-shape. The acceleration component into the direction of the motion activates the device, deforming the teeth.
- Air flow through compression system in turbo machine such as a jet engine.
- Bridges on pillars, frameworks of houses, etc.

08.04 .2008

The impossibility to approach a variational problem in such a domain directly with numerical methods, due to a large number of mesh points required by the rough boundary of Ω_{ε}, suggests to develop an asymptotic analysis of the problem, as ε vanishes.

Then, the goal is to approach the problem, when ε gets smaller, with a model in Ω which can be numerically solved.

Model problem with homogeneous Dirichlet boundary condition

Let $u_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=f, \text { in } \Omega_{\varepsilon}, \\
u_{\varepsilon}=0, \text { on } \partial \Omega_{\varepsilon}
\end{array}\right.
$$

where $f \in L^{2}(\Omega)$.
By now on, \widetilde{v} denotes the zero-extension to Ω of any function v defined in Ω_{ε}.

Theorem

$$
\tilde{u}_{\varepsilon} \rightarrow 0 \text { strongly in } H^{1}\left(\Omega^{a}\right), \quad u_{\varepsilon} \rightarrow u^{b} \text { strongly in } H^{1}\left(\Omega^{b}\right)
$$

as ε tends to zero, where u^{b} is the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\Delta u^{b}=f, \text { in } \Omega^{b}, \\
u=0, \text { on } \partial \Omega^{b}
\end{array}\right.
$$

Sketch of the proof

$$
\exists c>0: \quad\left\|u_{\varepsilon}\right\|_{H^{\prime}\left(\Omega_{\varepsilon}\right)} \leq c, \quad \forall \varepsilon .
$$

Consequently, up to a subsequence,

$$
\widetilde{u}_{\varepsilon} \rightharpoonup v \text { weakly in } H^{1}(\Omega),
$$

as ε tends to zero. Then, passing to the limit in

$$
\widetilde{u}_{\varepsilon}=\chi_{\Omega_{\varepsilon}^{a}} \widetilde{u}_{\varepsilon}, \text { in } \Omega^{a}, \quad \forall \varepsilon,
$$

one obtains that

$$
v=\left|\omega^{\prime}\right| v, \text { a.e. in } \Omega^{a},
$$

i.e.

$$
v=0, \text { a.e. in } \Omega^{a} .
$$

Model problem with homogeneous Neumann boundary condition

Let $u_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}+u_{\varepsilon}=f, \text { in } \Omega_{\varepsilon}, \\
D u_{\varepsilon} \cdot \nu_{\varepsilon}=0, \text { on } \partial \Omega_{\varepsilon},
\end{array}\right.
$$

where $f \in L^{2}(\Omega)$ and ν_{ε} denotes the unit outer normal on $\partial \Omega_{\varepsilon}$.
By now on, \widetilde{v} denotes the zero-extension to Ω of any function v defined in Ω_{ε}.

By using the method of oscillating test functions introduced by L. Tartar (Collège de France - 1977), R. Brizzi and J. P. Chalot (PhD Thesis - Nice University - 1978) proved the following result.

Theorem
$u_{\varepsilon} \rightharpoonup u^{b}$ weakly in $H^{1}\left(\Omega^{b}\right), \quad \widetilde{u}_{\varepsilon} \rightharpoonup|\omega| u^{a}$ weakly in $L^{2}\left(\Omega^{a}\right)$,

$$
\widetilde{D u_{\varepsilon}} \rightharpoonup\left(0, \cdots, 0,|\omega| \frac{\partial u^{a}}{\partial x_{N}}\right) \text { weakly in }\left(L^{2}\left(\Omega^{a}\right)\right)^{N},
$$

as ε tends to zero, where $u=\left(u^{a}, u^{b}\right) \in V^{2}(\Omega)=$

$$
\left\{v=\left(v^{a}, v^{b}\right) \in L^{2}\left(\Omega^{a}\right) \times H^{1}\left(\Omega^{b}\right), \frac{\partial v^{a}}{\partial x_{N}} \in L^{2}\left(\Omega^{a}\right), v^{a}=v^{b} \text { on } \Sigma^{0}\right\}
$$

is the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} u^{a}}{\partial x_{N}^{2}}+u^{a}=f, \text { in } \Omega^{a}, \\
-\Delta u^{b}+u^{b}=f, \text { in } \Omega^{b}, \\
u^{a}=u^{b},|\omega| \frac{\partial u^{a}}{\partial x_{N}}=\frac{\partial u^{b}}{\partial x_{N}}, \text { on } \Sigma^{0}, \\
\frac{\partial u^{a}}{\partial x_{N}}=0, \text { on } \Sigma^{a}, \quad D u^{b} \cdot \nu=0, \text { on } \partial \Omega^{b} \backslash \Sigma^{0} .
\end{array}\right.
$$

The method of oscillating test functions of L . Tartar

$$
\text { Sketch of the proof when } N=2
$$

Choosing $v=u_{\varepsilon}$ as test function in the problem implies

$$
\exists c>0:\left\|u_{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}\right)}<c \quad \forall \varepsilon .
$$

Consequently, there exist a subsequence of $\{\varepsilon\}$, still denoted by $\{\varepsilon\}$, and

$$
u=\left(u^{a}, u^{b}\right) \in V^{2}(\Omega), \quad d^{\prime} \in L^{2}\left(\Omega^{a}\right)
$$

such that, as ε tends to zero,

$$
\widetilde{u_{\varepsilon}^{a}} \rightharpoonup \theta u^{a}, \quad \widetilde{D_{x_{2}} u_{\varepsilon}^{a}}=D_{x_{2}} \widetilde{u_{\varepsilon}^{a}} \rightharpoonup \theta D_{x_{2}} u^{a} \quad \text { weakly in } L^{2}\left(\Omega^{a}\right)
$$

$$
\widetilde{D_{x_{1}} u_{\varepsilon}^{a}} \rightharpoonup \theta d^{\prime} \text { weakly in } L^{2}\left(\Omega^{a}\right)
$$

$$
u_{\varepsilon}^{b} \rightharpoonup u^{b} \text { weakly in } H^{1}\left(\Omega^{b}\right) .
$$

To identify d^{\prime}, one uses the method of oscillating test functions introduced by L. Tartar. Let $\tau \in W_{0}^{1, \infty}(] 0,1[)$ be a function such that

$$
\tau\left(x_{1}\right)=x_{1}, \text { in } \omega .
$$

Let $\widehat{\tau}$ be the $[0,1]$-periodic extension to \mathbb{R} of a τ. Then, the sequence $\left\{w_{\varepsilon}\right\}_{\varepsilon}$ defined by

$$
w_{\varepsilon}: x=\left(x_{1}, x_{2}\right) \in \Omega^{a} \rightarrow \varepsilon \widehat{\tau}\left(\frac{x_{1}}{\varepsilon}\right)
$$

satisfies the following properties:

$$
\begin{gathered}
D w_{\varepsilon}=\binom{1}{0}, \text { in } \Omega_{\varepsilon}, \quad \forall \varepsilon, \\
w_{\varepsilon} \rightarrow 0 \text { strongly in } L^{\infty}(\Omega), \text { as } \varepsilon \rightarrow 0 .
\end{gathered}
$$

Choosing $v=w_{\varepsilon} \varphi$ with $\varphi \in C_{c}^{\infty}\left(\Omega^{a}\right)$ as test function in the problem gives

$$
\begin{aligned}
& \int_{\Omega^{a}} \widetilde{D u_{\varepsilon}^{a}} D \varphi w_{\varepsilon} d x+\int_{\Omega^{a}} \widetilde{D u_{\varepsilon}^{a}}\binom{1}{0} \varphi d x+\int_{\Omega^{a}} \widetilde{u_{\varepsilon}^{a}} \varphi w_{\varepsilon} d x \\
& =\int_{\Omega^{a}} \chi_{\Omega_{\varepsilon}^{a}} f \varphi w_{\varepsilon} d x, \quad \forall \varphi \in C_{C}^{\infty}\left(\Omega^{a}\right), \quad \forall \varepsilon .
\end{aligned}
$$

Passing to the limit, as ε tends to zero, gives

$$
\int_{\Omega^{a}}\binom{\theta d^{\prime}}{\theta D_{x_{2}} u^{a}}\binom{1}{0} \varphi d x=0, \quad \forall \varphi \in C_{0}^{\infty}\left(\Omega^{a}\right)
$$

which provides

$$
d^{\prime}=0, \text { a.e. in } \Omega^{a} .
$$

Remark

It is not restrictive to study the asymptotic behavior of $\widetilde{u}_{\varepsilon}$ in Ω^{a}. In fact, if $P_{\varepsilon} \in \mathcal{L}\left(H^{1}\left(\Omega_{\varepsilon}^{a}\right), H^{1}\left(\Omega^{a}\right)\right)$ is an extension operator such that

$$
P_{\varepsilon} u_{\varepsilon} \rightharpoonup w \text { weakly in } H^{1}\left(\Omega^{a}\right),
$$

passing to the limit in

$$
\widetilde{u}_{\varepsilon}=\chi_{\Omega_{\varepsilon}^{a}} P_{\varepsilon} u_{\varepsilon}, \text { in } \Omega^{a},
$$

one obtains that

$$
u^{a}=w \text { in } \Omega^{a} .
$$

Counterexample (M. Zerner)

In general, it is not possible to build a bounded sequence $\left\{P_{\varepsilon}\right\}_{\varepsilon}$ of extension operators $P_{\varepsilon} \in \mathcal{L}\left(H^{1}\left(\Omega_{\varepsilon}^{a}\right), H^{1}\left(\Omega^{a}\right)\right)$. In fact, let

$$
\Omega_{\varepsilon}^{a}=\bigcup_{\{k \in \mathbb{N}: \varepsilon] 0, \frac{1}{2}[+\varepsilon(k-1) \subset \subset] 0,1[\}}\left((\varepsilon] 0, \frac{1}{2}[+\varepsilon(k-1)) \times\right] 0, /^{a}[),
$$

and

$$
v_{\varepsilon}=\left\{\begin{array}{l}
\left.v \text { in }(\varepsilon] 0, \frac{1}{2}[+\varepsilon(k-1)) \times\right] 0, I^{a}[, \text { if } k \text { is odd, } \\
\left.-v \text { in }(\varepsilon] 0, \frac{1}{2}[+\varepsilon(k-1)) \times\right] 0, I^{a}[, \text { if } k \text { is even, }
\end{array}\right.
$$

where $\left.v \in C_{0}^{1}\right] 0, I^{a}[$. Then,

$$
\exists c>0:\left\|v_{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}^{a}\right)} \leq c \quad \forall \varepsilon
$$

while, if $P_{\varepsilon} \in \mathcal{L}\left(H^{1}\left(\Omega_{\varepsilon}^{a}\right), H^{1}\left(\Omega^{a}\right)\right)$ is an extension operator, an easy computation shows that

$$
\lim _{\varepsilon \rightarrow 0}\left\|\frac{\partial P_{\varepsilon} v_{\varepsilon}}{\partial x_{1}}\right\|_{H^{1}\left(\Omega^{a}\right)}=+\infty
$$

Let $u_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}+u_{\varepsilon}=f, \text { in } \Omega_{\varepsilon}, \\
D u_{\varepsilon} \cdot \nu=0, \text { on } \partial \Omega_{\varepsilon}
\end{array}\right.
$$

with $N=2$ and $f \in H^{1}(\Omega)$. Then, R. Brizzi and J. P. Chalot (1978) proved the existence of a sequence $\left\{P_{\varepsilon}\right\}_{\varepsilon}$ of extension operators $P_{\varepsilon} \in \mathcal{L}\left(H^{1}\left(\Omega_{\varepsilon}^{a}\right), H^{1}\left(\Omega^{a}\right)\right)$ and a constant $c>0$ such that

$$
\left\|P_{\varepsilon} u_{\varepsilon}\right\|_{H^{1}\left(\Omega^{a}\right)} \leq c \quad \forall \varepsilon .
$$

If $\mathrm{N}=3$, T. Mel'nyk (Z. Anal. Anwendungen - 1999) proved the same result if the functions f have not "strong scattering of the values on the neighboring cylinders".

Non homogeneous Neumann boundary conditions

Let $\lambda \in\left[0,+\infty\left[\right.\right.$ and $u_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}+u_{\varepsilon}=f \text { in } \Omega_{\varepsilon} \\
D u_{\varepsilon} \cdot \nu_{\varepsilon}=\gamma \varepsilon^{\lambda} \text { on } \sum_{\varepsilon}^{\mathrm{a}, \text { lat }} \\
D u_{\varepsilon} \cdot \nu_{\varepsilon}=0 \text { on } \partial \Omega_{\varepsilon} \backslash \Sigma_{\varepsilon}^{\mathrm{a}} \text {, lat }
\end{array}\right.
$$

where $f \in L^{2}(\Omega)$ and $\gamma \in \mathbb{R}$.
A.G. (Ricerche Mat. - 1994) proved the following result.

Theorem
If $\lambda \geq 1$, then
$u_{\varepsilon} \rightharpoonup u^{b}$ weakly in $H^{1}\left(\Omega^{b}\right), \quad \widetilde{u}_{\varepsilon} \rightharpoonup|\omega| u^{a}$ weakly in $L^{2}\left(\Omega^{a}\right)$,

$$
\widetilde{D u_{\varepsilon}} \rightharpoonup\left(0, \cdots, 0,|\omega| \frac{\partial u^{a}}{\partial x_{N}}\right) \text { weakly in }\left(L^{2}\left(\Omega^{a}\right)\right)^{N}
$$

as ε tends to zero, where $u=\left(u^{a}, u^{b}\right) \in V^{2}(\Omega)$ is the weak solution to the following problem

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} u^{a}}{\partial x_{N}^{2}}+u^{a}=\gamma \delta_{\lambda, 1} \frac{|\partial \omega|}{|\omega|}+f^{a} \text { in } \Omega^{a} \\
-\Delta u^{b}+u^{b}=f^{b} \text { in } \Omega^{b} \\
u^{a}=u^{b}, \quad|\omega| \frac{\partial u^{a}}{\partial x_{N}}=\frac{\partial u^{b}}{\partial x_{N}} \text { on } \Sigma^{0}, \\
\frac{\partial u^{a}}{\partial x_{N}}=0 \text { on } \Sigma^{a} \\
D u^{b} \cdot \nu=0 \text { on } \partial \Omega^{b} \backslash \Sigma^{0} .
\end{array}\right.
$$

If $0 \leq \lambda<1$, then

$$
\left.\exists \mu_{1}, \mu_{2} \in\right] 0,+\infty\left[: \frac{\mu_{1}}{\varepsilon^{1-\lambda}} \leq\left\|u_{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}\right)} \leq \frac{\mu_{2}}{\varepsilon^{1-\lambda}}, \quad \forall \varepsilon,\right.
$$ and the limit of $\varepsilon^{1-\lambda} u_{\varepsilon}$ is

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} u^{a}}{\partial x_{N}^{2}}+u^{a}=\gamma \frac{|\partial \omega|}{|\omega|} \text { in } \Omega^{a}, \\
-\Delta u^{b}+u^{b}=0 \text { in } \Omega^{b}, \\
u^{a}=u^{b},|\omega| \frac{\partial u^{a}}{\partial x_{N}}=\frac{\partial u^{b}}{\partial x_{N}} \text { on } \Sigma^{0}, \\
\frac{\partial u^{a}}{\partial x_{N}}=0 \text { on } \Sigma^{a}, \\
D u^{b} \cdot \nu=0 \text { on } \partial \Omega^{b} \backslash \Sigma^{0} .
\end{array}\right.
$$

The matrix A and the coefficient a_{0}

Let A be a $N \times N$ matrix function such that

$$
\left\{\begin{array}{l}
A=\left(A_{i j}\right)_{i, j \in\{1, \cdots, N\}} \in\left(L^{\infty}(\Omega)\right)^{N \times N}, \\
A(x) \xi \xi \geq \alpha|\xi|^{2}, \text { a.e. } x \in \Omega, \quad \forall \xi \in \mathbb{R}^{N}, \quad \text { for some } \alpha>0
\end{array}\right.
$$

We set

$$
A^{\prime}=\left(A_{i j}\right)_{i, j=1, \ldots, N-1}, \quad V^{\prime}=\left(A_{i N}\right)_{i=1, \cdots, N-1}, \quad H^{\prime}=\left(A_{N j}\right)_{j=1, \ldots, N-1},
$$

so the matrix A can be written as

$$
A=\left(\begin{array}{cc}
A^{\prime} & V^{\prime} \\
H^{\prime} & A_{N N}
\end{array}\right)
$$

For a.e. x in Ω, the system

$$
A^{\prime}(x) z^{\prime}(x)+V^{\prime}(x)=0
$$

admits the unique (column $(N-1)$-vector) solution

$$
z^{\prime}(x)=-\left(A^{\prime}(x)\right)^{-1} V^{\prime}(x), \quad z^{\prime} \in\left(L^{\infty}(\Omega)\right)^{N-1} .
$$

We define the coefficient a_{0} by

$$
a_{0}=A_{N N}+H^{\prime} z^{\prime}=A_{N N}-H^{\prime}\left(A^{\prime}\right)^{-1} V^{\prime} \text {, a.e. in } \Omega .
$$

Observe that

$$
\left\{\begin{array}{l}
a_{0} \in L^{\infty}(\Omega), \\
a_{0}(x) \geq \alpha, \text { a.e. } x \in \Omega
\end{array}\right.
$$

Remark a_{0} and z^{\prime} depend only on the matrix A, and not on Ω and Ω_{ε}. In particular, $z^{\prime}=0$ and $a_{0}=1$, if $A=I d$.

Anisotropic linear case

Let

$$
c \in L^{\infty}(\Omega), \quad c(x) \geq \gamma, \text { a.e. } x \in \Omega, \quad \text { for some } \gamma>0,
$$

and

$$
f \in L^{2}(\Omega)
$$

Let $u_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ be the unique solution to

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A D u_{\varepsilon}\right)+c u_{\varepsilon}=f, \text { in } \Omega_{\varepsilon}, \\
A D u_{\varepsilon} \nu_{\varepsilon}=0, \text { on } \partial \Omega_{\varepsilon}
\end{array}\right.
$$

where ν_{ε} denotes the unit outer normal on $\partial \Omega_{\varepsilon}$.
A.G., O. Guibé, and F. Murat (Arch. Rational Mech. Anal. - 2017) proved the following result.
Theorem

$$
\begin{aligned}
& \left\|u_{\varepsilon}^{a}-u^{a}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{a}\right)} \longrightarrow 0, \\
& \left\|D_{x_{N}} u_{\varepsilon}^{a}-D_{x_{N}} u^{a}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{a}\right)} \longrightarrow 0, \\
& \left\|D_{x^{\prime}} u_{\varepsilon}^{a}-D_{x_{N}} u^{a} z^{\prime}\right\|_{\left(L^{2}\left(\Omega_{\varepsilon}^{a}\right)\right)^{N-1}} \longrightarrow 0, \\
& u_{\varepsilon}^{b} \longrightarrow u^{b} \text { strongly in } H^{1}\left(\Omega^{b}\right) .
\end{aligned}
$$

as ε tends to zero, where $u=\left(u^{a}, u^{b}\right) \in V^{2}(\Omega)$ is the unique weak solution to the following problem:

$$
\left\{\begin{array}{l}
-D_{x_{N}}\left(a_{0} D_{x_{N}} u^{a}\right)+c u^{a}=f, \text { in } \Omega^{a}, \\
-\operatorname{div}\left(A D u^{b}\right)+c u^{b}=f, \text { in } \Omega^{b}, \\
u^{a}=u^{b}, \quad-\theta a_{0} D_{x_{N}} u^{a} \nu_{N}^{0}=A D u^{b} \nu^{0}, \text { on } \Sigma^{0}, \\
-a_{0} D_{x_{N}} u^{a} \nu_{N}^{a}=0, \text { on } \Sigma^{a}, \\
A D u^{b} \nu^{b}=0, \text { on } \partial \Omega^{b} \backslash \Sigma^{0},
\end{array}\right.
$$

where ν^{0} is the unit normal to Σ^{0} outer to Ω^{b} (and inner to Ω^{a}), ν_{N}^{0} its N-th component, $\nu_{N}^{\text {a }}$ is the N-th component of the unit normal to Σ^{a} outer to Ω^{a}, and ν^{b} the unit normal to $\partial \Omega^{b} \backslash \Sigma^{0}$ outer to Ω^{b}.

Corollary

$$
\begin{aligned}
& \widetilde{u_{\varepsilon}^{a}} \rightharpoonup \theta u^{a} \text { weakly in } L^{2}\left(\Omega^{a}\right), \\
& \widetilde{D_{x_{N}} u_{\varepsilon}^{a}}=D_{x_{N}} \widetilde{u_{\varepsilon}^{a}} \rightharpoonup \theta D_{x_{N}} u^{a} \text { weakly in } L^{2}\left(\Omega^{a}\right), \\
& \widetilde{D_{x^{\prime}} u_{\varepsilon}^{a}} \rightharpoonup \theta D_{x_{N}} u^{a} z^{\prime} \text { weakly in }\left(L^{2}\left(\Omega^{a}\right)\right)^{N-1}, \\
& u_{\varepsilon}^{b} \longrightarrow u^{b} \text { strongly in } H^{1}\left(\Omega^{b}\right) .
\end{aligned}
$$

as ε tends to zero.

The monotone case

Let $u_{\varepsilon} \in W^{1, p}\left(\Omega_{\varepsilon}\right)$ be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(D u_{\varepsilon}\right)\right)+\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}=f, \text { in } \Omega_{\varepsilon}, \\
a\left(D u_{\varepsilon}\right) \cdot \nu=0, \text { on } \partial \Omega_{\varepsilon},
\end{array}\right.
$$

where $p \in] 1,+\infty\left[, f \in L^{\frac{p}{\rho-1}}\left(\Omega_{\varepsilon}\right)\right.$ and $a=\left(a_{1}, \cdots, a_{N}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a monotone continuous function such that

$$
\begin{cases}\exists \alpha>0, c_{1} \geq 0: \alpha|\xi|^{p}-c_{1} \leq a(\xi) \xi, & \forall \xi \in \mathbb{R}^{N} \\ \exists \beta>0, c_{2} \geq 0:|a(\xi)| \leq \beta|\xi|^{p-1}+c_{2}, & \forall \xi \in \mathbb{R}^{N}\end{cases}
$$

D. Blanchard, L. Carbone and A.G. (M2AN, Math. Model. Numer. Anal. - 1999) proved the following result.

Theorem
As ε tends to zero,

$$
\left\{\begin{array}{l}
\widetilde{u}_{\varepsilon} \rightharpoonup|\omega| u^{a} \text { weakly in } L^{p}\left(\Omega^{a}\right) \\
\widetilde{\partial u_{\varepsilon}}=\frac{\partial \widetilde{u}_{\varepsilon}}{\partial x_{N}} \rightharpoonup|\omega| \frac{\partial u^{a}}{\partial x_{N}} \text { weakly in } L^{p}\left(\Omega^{a}\right), \\
u_{\varepsilon} \rightharpoonup u^{b} \text { weakly in } W^{1, p}\left(\Omega^{b}\right)
\end{array}\right.
$$

and, up to a subsequence,

$$
\frac{\widetilde{\partial u_{\varepsilon}}}{\partial x_{i}} \rightharpoonup d_{i} \text { weakly in } L^{p}\left(\Omega^{a}\right), \quad \forall i \in\{1, \cdots, N-1\}
$$

where $\left(\left(u^{a}, u^{b}\right), d_{1}, \cdots, d_{N-1}\right) \in V^{p}(\Omega) \times\left(L^{p}\left(\Omega^{a}\right)\right)^{N-1}$, with

$$
\begin{gathered}
V^{p}(\Omega)= \\
\left\{v=\left(v^{a}, v^{b}\right) \in L^{p}\left(\Omega^{a}\right) \times W^{1, p}\left(\Omega^{b}\right), \frac{\partial v^{a}}{\partial x_{N}} \in L^{p}\left(\Omega^{a}\right), v^{a}=v^{b} \text { on } \Sigma^{0}\right\}
\end{gathered}
$$

solves the following system

$$
\left\{\begin{array}{l}
-\frac{\partial}{\partial x_{N}} a_{N}\left(\frac{d_{1}}{|\omega|}, \cdots, \frac{d_{N-1}}{|\omega|}, \frac{\partial u^{a}}{\partial x_{N}}\right)+\left|u^{a}\right|^{p-2} u^{a}=f^{a}, \text { in } \Omega^{a}, \\
-\operatorname{div}\left(a\left(D u^{b}\right)\right)+\left|u^{b}\right|^{p-2} u^{b}=f^{b}, \text { in } \Omega^{b}, \\
u^{a}=u^{b}, \quad|\omega| a_{N}\left(\frac{d_{1}}{|\omega|}, \cdots, \frac{d_{N-1}}{|\omega|}, \frac{\partial u^{a}}{\partial x_{N}}\right)=a_{N}\left(D u^{b}\right), \text { on } \Sigma^{0}, \\
a_{N}\left(\frac{d_{1}}{|\omega|}, \cdots, \frac{d_{N-1}}{|\omega|}, \frac{\partial u^{a}}{\partial x_{N}}\right)=0, \text { on } \Sigma^{a}, \\
a\left(D u^{b}\right) \cdot \nu=0, \text { on } \partial \Omega^{b} \backslash \Sigma^{0}, \\
a_{i}\left(\frac{d_{1}}{|\omega|}, \cdots, \frac{d_{N-1}}{|\omega|}, \frac{\partial u^{a}}{\partial x_{N}}\right)=0, \text { in } \Omega^{a}, \quad \forall i \in 1, \cdots, N-1 .
\end{array}\right.
$$

The couple $\left(u^{a}, u^{b}\right)$ is unique. If a is strictly monotone, also $\left(d_{1}, \cdots, d_{N-1}\right)$ is unique.

Moreover, the energies converge in the sense that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} a\left(D u_{\varepsilon}\right) D u_{\varepsilon}+\left|u_{\varepsilon}\right|^{p} d x \\
& =|\omega| \int_{\Omega^{a}} a_{N}\left(\frac{d_{1}}{|\omega|}, \cdots, \frac{d_{N-1}}{|\omega|}, \frac{\partial u^{a}}{\partial x_{N}}\right) \frac{\partial u^{a}}{\partial x_{N}}+\left|u^{a}\right|^{p} d x \\
& +\int_{\Omega^{b}}\left(a\left(D u^{b}\right) D u^{b}+\left|u^{b}\right|^{p}\right) d x .
\end{aligned}
$$

The limit problem for the p-Laplacian

$$
\left\{\begin{array}{l}
-\frac{\partial}{\partial x_{N}}\left(\left|\frac{\partial u^{a}}{\partial x_{N}}\right|^{p-2} \frac{\partial u^{a}}{\partial x_{N}}\right)+\left|u^{a}\right|^{p-2} u^{a}=f, \text { in } \Omega^{a}, \\
-\operatorname{div}\left(\left|D u^{b}\right|^{p-2} D u^{b}\right)+\left|u^{b}\right|^{p-2} u^{b}=f, \text { in } \Omega^{b}, \\
u^{a}=u^{b},|\omega|\left|\frac{\partial u^{a}}{\partial x_{N}}\right|^{p-2}=\left|D u^{b}\right|^{p-2} \frac{\partial u^{b}}{\partial x_{N}}, \text { on } \Sigma^{0}, \\
\frac{\partial u^{a}}{\partial x_{N}}=0, \text { on } \Sigma^{a}, \\
\left|D u^{b}\right|^{p-2} D u^{b} \cdot \nu=0, \text { on } \partial \Omega^{b} \backslash \Sigma^{0}, \\
d_{1}=\cdots=d_{N-1}=0, \text { in } \Omega^{a} .
\end{array}\right.
$$

This result was already obtained by A. Corbo Esposito, P. Donato, A. G, and C. Picard in 1997.

Ω

Figure: Ω

Signorini boundary value problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(x, D u_{\varepsilon}(x)\right)\right)+a_{0}\left(x, u_{\varepsilon}(x)\right)=f(x), \text { in } \Omega_{\varepsilon} \\
u_{\varepsilon}=0, \text { on } \Sigma_{\varepsilon}^{a}, \\
\left\{\begin{array}{l}
u_{\varepsilon}(x) \leq g(x), \quad a\left(x, D u_{\varepsilon}(x)\right) \nu_{\varepsilon}(x)+\varepsilon^{\lambda} h\left(x, u_{\varepsilon}(x)\right) \leq 0 \\
\left(u_{\varepsilon}(x)-g(x)\right)\left(a\left(x, D u_{\varepsilon}(x)\right) \nu_{\varepsilon}(x)+\varepsilon^{\lambda} h\left(x, u_{\varepsilon}\right)\right)=0
\end{array}\right. \tag{a,lat}\\
a\left(x, D u_{\varepsilon}(x)\right) \nu_{\varepsilon}(x)=0, \text { on } \partial \Omega_{\varepsilon} \backslash\left(\sum_{\varepsilon}^{a} \cup \sum_{\varepsilon}^{a, l a t}\right)
\end{array}\right.
$$

The Signorini boundary conditions in the third and fourth lines mean that on $\sum_{\varepsilon}^{\text {a,lat }}$ one can distinguish two a priori unknown subsets where u_{ε} satisfies the complementary boundary conditions:

$$
u_{\varepsilon}(x)=g(x), \quad \text { or } \quad a\left(x, D u_{\varepsilon}(x)\right) \nu_{\varepsilon}(x)=-\varepsilon^{\lambda} h\left(x, u_{\varepsilon}\right)
$$

Such a problem can modelize chemical activity in a multi-structure with thick absorbers (for instance, the adsorption of nutrients on the tissues of the stomach wall). The impossibility to control physical processes on the boundary of the teeth suggests to use Signorini b.
c. which seem more realistic for describing real phenomena.

Assumptions

$$
\begin{aligned}
p & \in[2,+\infty[\\
& a:(x, \xi) \in \Omega \times \mathbb{R}^{N} \rightarrow a(x, \xi)=\left(a_{1}(x, \xi), \cdots, a_{N-1}(x, \xi), a_{N}(x, \xi)\right) \\
= & \left(a^{\prime}(x, \xi), a_{N}(x, \xi)\right) \in \mathbb{R}^{N} \text { is a function such that }
\end{aligned}
$$

a is a Carathéodory function,
$a(x, \cdot)$ is strictly monotone for a.e. $x \in \Omega$,
$\exists \alpha \in] 0,+\infty\left[, \alpha_{1} \in L^{1}(\Omega): \alpha|\xi|^{p}+\alpha_{1}(x) \leq a(x, \xi) \xi\right.$, a.e. $x \in \Omega, \forall \xi \in \mathbb{R}^{N}$,

$$
\exists \beta \in] 0,+\infty\left[, \beta_{1} \in L^{\frac{p}{p-1}}(\Omega):|a(x, \xi)| \leq \beta|\xi|^{p-1}+\beta_{1}(x), \text { a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^{\prime}\right.
$$

$$
a_{0}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}
$$

is a function such that
a_{0} is a Carathéodory function, $a_{0}(x, \cdot)$ is monotone for a.e. $x \in \Omega$,
$\exists \gamma \in] 0,+\infty\left[, \gamma_{1} \in L^{\frac{p}{p-1}}(\Omega):\left|a_{0}(x, t)\right| \leq \gamma|t|^{p-1}+\gamma_{1}(x)\right.$, a.e. $x \in \Omega, \forall t \in \mathbb{R}$;

$$
h: \Omega^{a} \times \mathbb{R} \rightarrow \mathbb{R}
$$

is a function such that
is a continuous function,
$h(x, \cdot)$ is monotone for a.e. $x \in \Omega^{a}$,
$\exists \eta \in] 0,+\infty\left[, \eta_{1} \in W^{1, \frac{p}{p-1}}\left(\Omega^{a}\right):|h(x, t)| \leq \eta|t|^{p-1}+\eta_{1}(x), \quad\right.$ a.e. $x \in \Omega^{a}$,
$\exists D h$ and it is a Carathéodory valued-function,

$$
\left\{\begin{array}{l}
\exists \theta \in] 0,+\infty\left[, \theta_{1} \in L^{\frac{p}{p-1}}\left(\Omega^{a}\right):\left|D_{t} h(x, t)\right| \leq \theta|t|^{p-2},\right. \\
\left|D_{x_{i}} h(x, t)\right| \leq \theta|t|^{p-1}+\theta_{1}(x), \quad \text { a.e. } x \in \Omega^{a}, \quad \forall t \in \mathbb{R}, \quad \forall i \in\{1, \cdots, N\} ; \\
\quad f \in L^{\frac{p}{p-1}}(\Omega), \\
g \in W^{1, p}\left(\Omega^{a}\right), \quad g \geq 0 \text { a.e. in } \Omega^{a}, \quad g_{\left.\right|_{\Sigma^{a} \cup \Sigma^{0}}}=0,
\end{array}\right.
$$

and

$$
\lambda \in \mathbb{R}
$$

Some examples

- h is a constant

$$
\begin{gathered}
\bullet \quad h(t, x)=g_{1}(x)|t|^{p-2} t+g_{2}(x) \\
\text { with } p \geq 2, \quad g_{1} \in W^{1, \infty}\left(\Omega^{a}\right), \text { and } g_{2} \in W^{1, \frac{p}{p-1}}\left(\Omega^{a}\right)
\end{gathered}
$$

- In Langmuir adsorption model $p=2$ and

$$
h(t)=\frac{t}{1+|t|}
$$

The weak formulation of such a problemis given by the following variational inequality

$$
\left\{\begin{array}{l}
u_{\varepsilon} \in \mathcal{K}_{\varepsilon}=\left\{v \in W^{1, p}\left(\Omega_{\varepsilon}\right): v \leq g \text { on } \sum_{\varepsilon}^{a, l a t}, \quad v_{\left.\right|_{\Sigma_{\varepsilon}^{z}}}=0\right\}, \\
\int_{\Omega_{\varepsilon}} a\left(x, D u_{\varepsilon}\right) D\left(v-u_{\varepsilon}\right) d x+\int_{\Omega_{\varepsilon}} a_{0}\left(x, u_{\varepsilon}\right)\left(v-u_{\varepsilon}\right) d x \\
+\varepsilon^{\lambda} \int_{\sum_{\varepsilon}^{, a l a t}} h\left(x, u_{\varepsilon}\right)\left(v-u_{\varepsilon}\right) d \sigma \geq \int_{\Omega_{\varepsilon}} f\left(v-u_{\varepsilon}\right) d x, \quad \forall v \in \mathcal{K}_{\varepsilon} .
\end{array}\right.
$$

Let

$$
\mathcal{K}=\left\{\begin{array}{l}
\\
v=\left(v^{a}, v^{b}\right) \in L^{p}\left(\Omega^{a}\right) \times W^{1, p}\left(\Omega^{b}\right): D_{x_{N}} v^{a} \in L^{p}\left(\Omega^{a}\right), \\
\\
\left.v^{a} \leq g \text { a.e. in } \Omega^{a}, \quad v_{\Sigma^{a}}^{a}=0, \quad v_{\Sigma^{0}}^{a}=v_{\Sigma^{0}}^{b}\right\} .
\end{array}\right.
$$

A.G. and T. A. Mel'nyk (J. Differential Equations-2018) proved the following result.

Theorem
Assume $\lambda \geq 1$, Assume ω having C^{m+2}-regularity with $m>\frac{N-1}{2}$. For every ε, let u_{ε} be the unique solution to our problem and set $u_{\varepsilon}^{a}=u_{\left.\varepsilon\right|_{\Omega_{\varepsilon}^{a}}}, u_{\varepsilon}^{b}=u_{\left.\varepsilon\right|_{\Omega} b}$. Then,

$$
\begin{gathered}
\widetilde{u_{\varepsilon}^{a}} \rightharpoonup|\omega| u^{a} \text { weakly in } L^{p}\left(\Omega^{a}\right), \\
\widetilde{D_{x_{N}} u_{\varepsilon}^{a}}=D_{x_{N}} \widetilde{u_{\varepsilon}^{a}} \rightharpoonup|\omega| D_{x_{N}} u^{a} \text { weakly in } L^{p}\left(\Omega^{a}\right), \\
\widetilde{D_{x^{\prime}} u_{\varepsilon}^{a}} \rightharpoonup|\omega| d^{\prime} \text { weakly in }\left(L^{p}\left(\Omega^{a}\right)\right)^{N-1}, \\
u_{\varepsilon}^{b} \rightharpoonup u^{b} \text { weakly in } W^{1, p}\left(\Omega^{b}\right),
\end{gathered}
$$

$a\left(\widetilde{x, D u^{a}}\right) \rightharpoonup|\omega|\left(0, \cdots, 0, a_{N}\left(x,\left(d^{\prime}, D_{x_{N}} u^{a}\right)\right)\right)$ weakly in $\left(L^{\frac{p}{p-1}}\left(\Omega^{a}\right)\right)^{N}$, $a\left(x, D u_{\varepsilon}^{b}\right) \rightharpoonup a\left(x, D u^{b}\right)$ weakly in $\left(L^{\frac{p}{p-1}}\left(\Omega^{b}\right)\right)^{N}$,

$$
\widetilde{a_{0}\left(x, u_{\varepsilon}^{a}\right)} \rightharpoonup|\omega| a_{0}\left(x, u^{a}\right) \text { weakly in } L^{\frac{p}{p-1}}\left(\Omega^{a}\right),
$$

$$
a_{0}\left(x, u_{\varepsilon}^{b}\right) \rightharpoonup a_{0}\left(x, u^{b}\right) \text { weakly in } L^{\frac{p}{p-1}}\left(\Omega^{b}\right),
$$

$$
\widetilde{h\left(x, u_{\varepsilon}^{a}\right)} \rightharpoonup|\omega| h\left(x, u^{a}\right) \text { weakly in } L^{\frac{p}{p-1}}\left(\Omega^{a}\right),
$$

as ε tends to zero, and $\left(u^{a}, u^{b}\right)$ and d^{\prime} is the unique solution
to the following system:

$$
\left\{\begin{array}{l}
\left(u^{a}, u^{b}\right) \in \mathcal{K}, \quad d^{\prime} \in\left(L^{p}\left(\Omega^{a}\right)\right)^{N-1}, \\
a^{\prime}\left(x,\left(d^{\prime}, D_{x_{N}} u^{a}\right)\right)=0, \text { a.e. in } \Omega^{a}, \\
|\omega| \int_{\Omega^{a}}\left(a_{N}\left(x,\left(d^{\prime}, D_{x_{N}} u^{a}\right)\right)\left(D_{x_{N}} v-D_{x_{N}} u^{a}\right)+a_{0}\left(x, u^{a}\right)\left(v-u^{a}\right)\right) d x \\
+\delta_{\lambda, 1}|\partial \omega| \int_{\Omega^{a}} h\left(x, u^{a}\right)\left(v-u^{a}\right) d x \\
+\int_{\Omega^{b}}\left(a\left(x, D u^{b}\right)\left(D v-D u^{b}\right)+a_{0}\left(x, u^{b}\right)\left(v-u^{b}\right)\right) d x \\
\geq|\omega| \int_{\Omega^{a}} f\left(v-u^{a}\right) d x+\int_{\Omega^{b}} f\left(v-u^{b}\right) d x, \quad \forall v \in \mathcal{K},
\end{array}\right.
$$

where $\delta_{\lambda, 1}$ is the Kronecker delta.

Remarks

- The limit problem admits a unique solution $\left(u^{a}, u^{b}\right) \in \mathcal{K}$, $d^{\prime} \in\left(L^{p}\left(\Omega^{a}\right)\right)^{N-1}$. This problem is composed by the algebraic system

$$
a^{\prime}\left(x,\left(d^{\prime}(x), D_{x_{N}} u^{a}(x)\right)\right)=0, \text { a.e. in } \Omega^{a},
$$

with $N-1$ equations and N unknowns $\left(d^{\prime}, u^{a}\right)$, coupled to a variational inequality involving (d^{\prime}, u^{a}, u^{b}), with u^{a} and u^{b} satisfying a transmission condition on Σ^{0}.

- If $\lambda>1$, the Signorini boundary condition does not give any contribution to the limit problem.
- If $\lambda=1$, the Signorini boundary condition becomes the volume integral

$$
|\partial \omega| \int_{\Omega^{a}} h\left(x, u^{a}\right)\left(v-u^{a}\right) d x
$$

in the limit problem.

An auxiliary problem

Let \equiv be the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
\Delta \equiv=\frac{|\partial \omega|}{|\omega|}, \text { in } \omega, \\
D \equiv \cdot \nu=1, \text { on } \partial \omega, \\
\int_{\omega} \equiv d y=0,
\end{array}\right.
$$

where ν denotes the unit outer normal on $\partial \omega$. Note that \equiv belongs to $C^{2}(\bar{\omega})$, since ω has C^{m+2}-regularity with $m>\frac{N-1}{2}$. Consequently \equiv is also a classical solution. In what follows, we set

$$
C \equiv=\sup _{\bar{\omega}}|D \equiv| .
$$

Lemma

Let \equiv be denoting also the $] 0,1\left[{ }^{N-1}\right.$ - periodic extension to $\cup_{k \in \mathbb{Z}^{N-1}}(\bar{\omega}+k)$ of the solution of previous problem. Then,

$$
\varepsilon \int_{\Sigma_{\varepsilon}^{a}, l a t} v d \sigma=\frac{|\partial \omega|}{|\omega|} \int_{\Omega_{\varepsilon}^{a}} v d x+\varepsilon \int_{\Omega_{\varepsilon}^{a}}(D \equiv)\left(\frac{x^{\prime}}{\varepsilon}\right) D_{x^{\prime}} v d x, \quad \forall v \in W^{1,1}\left(\Omega_{\varepsilon}^{a}\right) .
$$

Example of using previous lemma: $u^{a} \leq g$, a.e. in Ω^{a}.

Proof.

Since $u_{\varepsilon} \in \mathcal{K}_{\varepsilon}$, one has

$$
\varepsilon \int_{\Sigma_{\varepsilon}^{a, \mid t a}} u_{\varepsilon}^{a} \varphi d \sigma \leq \varepsilon \int_{\Sigma_{\varepsilon}^{a} / a t} g \varphi d \sigma, \quad \forall \varphi \in C_{0}^{\infty}\left(\Omega^{a}\right): \varphi \geq 0 \text { in } \Omega^{a}, \quad \forall \varepsilon .
$$

Thanks to previous Lemma, this inequality is equivalent to

$$
\begin{aligned}
& \frac{|\partial \omega|}{|\omega|} \int_{\Omega^{a}} \widetilde{u_{\varepsilon}^{a}} \varphi d x+\varepsilon \int_{\Omega_{\varepsilon}^{a}}(D \equiv)\left(\frac{x^{\prime}}{\varepsilon}\right) D_{x^{\prime}}\left(u_{\varepsilon}^{a} \varphi\right) d x \\
& \leq \frac{|\partial \omega|}{|\omega|} \int_{\Omega^{a}} \chi_{\Omega_{\varepsilon}^{a}} g \varphi d x+\varepsilon \int_{\Omega_{\varepsilon}^{a}}(D \equiv)\left(\frac{x^{\prime}}{\varepsilon}\right) D_{x^{\prime}}(g \varphi) d x, \quad \forall \varphi \in C_{0}^{\infty}\left(\Omega^{a}\right): \varphi \geq 0
\end{aligned}
$$

Passing to the limit, as ε tends to zero, in this inequality gives

$$
\int_{\Omega^{a}} u^{a} \varphi d x \leq \int_{\Omega^{a}} g \varphi d x, \quad \forall \varphi \in C_{0}^{\infty}\left(\Omega^{a}\right): \varphi \geq 0 \text { in } \Omega^{a},
$$

which completes the proof.

The case $\lambda<1$

A.G. and T. A. Mel'nyk, work in progress

If $\lambda<1$, the existence and the uniqueness of the solution to our ε-problem holds agains true, but one can not expect to obtain a priori estimates independent of ε, without additional assumptions on h, as the following example shows.
Let u_{ε} be the unique weak solution to

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=0, \text { in } \Omega_{\varepsilon}, \\
u_{\varepsilon}=0, \text { on } \Sigma_{\varepsilon}^{a}, \\
\left\{\begin{array}{l}
u_{\varepsilon}(x) \leq g(x), \quad D u_{\varepsilon}(x) \cdot \nu_{\varepsilon}(x)+\varepsilon^{\lambda} \leq 0, \\
\left(u_{\varepsilon}(x)-g(x)\right)\left(D u_{\varepsilon}(x) \cdot \nu_{\varepsilon}(x)+\varepsilon^{\lambda}\right)=0, \\
D u_{\varepsilon}(x) \cdot \nu_{\varepsilon}(x)=0, \text { on } \partial \Omega_{\varepsilon} \backslash\left(\sum_{\varepsilon}^{a} \cup \Sigma_{\varepsilon}^{a, l a t}\right),
\end{array}\right.
\end{array}\right.
$$

where $\lambda \in\left[-\infty, 1\left[\right.\right.$ and $g \in H^{1}\left(\Omega^{a}\right)$ is a non-negative function with $g_{\left.\right|_{\text {г }} \cup \Sigma^{0}}=0$, i.e.

$$
\left\{\begin{array}{l}
u_{\varepsilon} \in \mathcal{K}_{\varepsilon}=\left\{v \in H^{1}\left(\Omega_{\varepsilon}, \Sigma_{\varepsilon}^{a}\right): v \leq g \text { on } \sum_{\varepsilon}^{a, l a t}\right\}, \tag{1}\\
\int_{\Omega_{\varepsilon}} D u_{\varepsilon} \cdot D\left(v-u_{\varepsilon}\right) d x+\varepsilon^{\lambda} \int_{\Sigma_{\varepsilon}^{a, l a t}}\left(v-u_{\varepsilon}\right) d \sigma \geq 0, \quad \forall v \in \mathcal{K}_{\varepsilon} .
\end{array}\right.
$$

Then,
$\left.\exists \varepsilon_{0} \in\right] 0,1\left[, \exists \mu_{1}, \mu_{2} \in\right] 0,+\infty\left[: \frac{\mu_{1}}{\varepsilon^{1-\lambda}} \leq\left\|u_{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}\right)} \leq \frac{\mu_{2}}{\varepsilon^{1-\lambda}}, \quad \forall \varepsilon \in\right] 0, \varepsilon_{0}[$.
Let us prove the first inequality in (2). Let $\psi \in C_{0}^{\infty}\left(\Omega^{a}\right)$ be a non-positive and not identically zero function. Then, choosing $v=\psi+u_{\varepsilon}$ as test function in (1) gives

$$
\int_{\Omega_{\varepsilon}^{a}} D u_{\varepsilon} \cdot D \psi d x+\varepsilon^{\lambda} \int_{\Sigma_{\varepsilon}^{a, l a t}} \psi d \sigma \geq 0, \quad \forall \varepsilon
$$

Consequently, thanks to the Cauchy-Schwarz inequality and previous Lemma, one obtains

$$
\|D \psi\|_{L^{2}\left(\Omega^{a}\right)}\left\|u_{\varepsilon}\right\|_{H^{\prime}(\Omega)} \geq \varepsilon^{\lambda-1} \frac{\left|\partial \omega^{\prime}\right|}{\left|\omega^{\prime}\right|} \int_{\Omega_{\varepsilon}^{a}}(-\psi) d x-\varepsilon^{\lambda} \int_{\Omega_{\varepsilon}^{a}}(D \equiv)\left(\frac{x^{\prime}}{\varepsilon}\right) \cdot D_{x^{\prime}} \psi d x
$$

which implies the first inequality in (2) since

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon^{\lambda-1} \frac{\left|\partial \omega^{\prime}\right|}{\left|\omega^{\prime}\right|} \int_{\Omega_{\varepsilon}^{a}}(-\psi) d x-\varepsilon^{\lambda} \int_{\Omega_{\varepsilon}^{a}}(D \equiv)\left(\frac{x^{\prime}}{\varepsilon}\right) \cdot D_{x^{\prime}} \psi d x}{\varepsilon^{\lambda-1}}= \\
=\left|\partial \omega^{\prime}\right| \int_{\Omega^{a}}(-\psi) d x>0
\end{gathered}
$$

and $\|D \psi\|_{L^{2}\left(\Omega^{a}\right)} \neq 0$ (note that ψ can not be a constant function).

In the case $\lambda<1$, we assume the following further hypothesis which guarantees us a priori estimates of u_{ε}, independently of ε :

$$
\exists \rho \in] 0,+\infty\left[: \rho|t|^{p} \leq h(x, t) t \text {, a.e. } x \in \Omega^{a}, \forall t \in \mathbb{R} .\right.
$$

Theorem

Let $\lambda \in] 0,1[$. Then, under all previous assumptions, as $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\widetilde{u_{\varepsilon}^{a}} \rightarrow 0 \text { strongly in } L^{p}\left(\Omega^{a}\right), \quad \partial_{x_{N}} \widetilde{u_{\varepsilon}^{a}} \rightharpoonup 0, \text { weakly in } L^{p}\left(\Omega^{a}\right), \tag{3}
\end{equation*}
$$

$$
\begin{gathered}
\widetilde{D_{x^{\prime}} u_{\varepsilon}^{a}} \rightharpoonup\left|\omega^{\prime}\right| d^{\prime} \text { weakly in }\left(L^{p}\left(\Omega^{a}\right)\right)^{N-1}, \\
u_{\varepsilon}^{b} \rightharpoonup u^{b} \text { weakly in } W^{1, p}\left(\Omega^{b}\right),
\end{gathered}
$$

where d^{\prime} is the unique solution to the following algebraic system

$$
a^{\prime}\left(x,\left(d^{\prime}(x), 0\right)\right)=0, \text { a.e. in } \Omega^{a},
$$

and u^{b} is the unique weak solution to the following problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(x, D u^{b}(x)\right)\right)+a_{0}\left(x, u^{b}(x)\right)=f(x), \text { in } \Omega^{b}, \tag{4}\\
u^{b}=0, \text { on } \Sigma^{0}, \\
a\left(x, D u^{b}(x)\right) \cdot \nu(x)=0, \text { on } \partial \Omega^{b} \backslash \Sigma^{0}
\end{array}\right.
$$

When $\lambda \leq 0$, convergences in (3) continue to hold true, but we are not able to identify the other limits. To overcome this gap, we add also an additonal assumption on a, precisely we assume

$$
\begin{equation*}
\exists \alpha \in] 0,+\infty\left[: \quad \alpha|\xi|^{p} \leq a(x, \xi) \xi, \quad \text { a.e. } x \in \Omega^{a}, \quad \forall \xi \in \mathbb{R}^{N} .\right. \tag{5}
\end{equation*}
$$

Theorem

Let $\lambda \leq 0$. Then, under all previous assumptions,

$$
\begin{aligned}
& \widetilde{u_{\varepsilon}^{a}} \rightarrow 0 \text { strongly in } L^{p}\left(\Omega^{a}\right), \\
& \widetilde{D u_{\varepsilon}^{a}} \rightharpoonup 0 \text {, weakly in }\left(L^{p}\left(\Omega^{a}\right)\right)^{N} \text {, } \\
& u_{\varepsilon}^{b} \rightharpoonup u^{b} \text { weakly in } W^{1, p}\left(\Omega^{b}\right),
\end{aligned}
$$

as ε tends to zero, and u^{b} is the unique weak solution to problem (4). This theorem holds true for any $\lambda<1$, but when $\lambda \in] 0,1$ [this theorem is just a corollary of the previous one since the additional assumption (5) implies $a(x, 0)=0$, consequently $d^{\prime}=0$, since the algebraic system $a^{\prime}\left(x,\left(d^{\prime}(x), 0\right)\right)=0$ admits a unique solution due to the strictly monotonicity of a in the second variable.

Remarks

We explicitly note that the limit problem obtained for $\lambda<1$ is the same obtained by homogenizing the following problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(x, D u_{\varepsilon}(x)\right)\right)+a_{0}\left(x, u_{\varepsilon}(x)\right)=f(x), \text { in } \Omega_{\varepsilon} \\
u_{\varepsilon}=0, \text { on } \Sigma_{\varepsilon}^{a} \cup \Sigma_{\varepsilon}^{a, l a t} \\
a\left(x, D u_{\varepsilon}(x)\right) \cdot \nu_{\varepsilon}(x)=0, \text { on } \partial \Omega_{\varepsilon} \backslash\left(\sum_{\varepsilon}^{a} \cup \Sigma_{\varepsilon}^{a, l a t}\right)
\end{array}\right.
$$

Roughly speaking,

- $\lambda=1$ is a critical size and the new term

$$
|\partial \omega| \int_{\Omega^{a}} h\left(x, u^{a}\right)\left(v-u^{a}\right) d x
$$

appears in the limit equation;

- the case $\lambda<1$ is equivalent to homogenizing a homogeneous Dirichlet boundary value problem on $\sum_{\varepsilon}^{a} \cup \sum_{\varepsilon}^{a, \text { lat }}$;
- the case $\lambda>1$ is equivalent to homogenizing a Signorini boundary value problem with homogeneous Neumann boundary constraint on $\sum_{\varepsilon}^{a, l a t}$.

More general geometries of the brush

A.G., O. Guibé, and F. Murat (Arch. Rational Mech. Anal. - 2017) Let $N \in \mathbb{N}, N \geq 2$,

$$
\psi^{a}, \psi^{0}, \psi^{b}: \mathbb{R}^{N-1} \rightarrow \mathbb{R}
$$

be three functions, with ψ^{a} and ψ^{b} continuous and ψ^{0} Lipschitz continuous, such that

$$
\psi^{b}\left(x^{\prime}\right)<\psi^{0}\left(x^{\prime}\right)<\psi^{a}\left(x^{\prime}\right), \quad \forall x^{\prime} \in \mathbb{R}^{N-1},
$$

$\Omega^{\prime} \subset \mathbb{R}^{N-1}$ be an open bounded set (no regularity is assumed on $\partial \Omega^{\prime}$), and set

$$
\left\{\begin{array}{l}
\Omega^{a}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N-1} \times \mathbb{R}: x^{\prime} \in \Omega^{\prime}, \psi^{0}\left(x^{\prime}\right)<x_{N}<\psi^{a}\left(x^{\prime}\right)\right\}, \\
\Sigma^{0}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N-1} \times \mathbb{R}: x^{\prime} \in \Omega^{\prime}, x_{N}=\psi^{0}\left(x^{\prime}\right)\right\}, \\
\Omega^{b}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N-1} \times \mathbb{R}: x^{\prime} \in \Omega^{\prime}, \psi^{b}\left(x^{\prime}\right)<x_{N}<\psi^{0}\left(x^{\prime}\right)\right\}, \\
\Omega=\Omega^{a} \cup \Sigma^{0} \cup \Omega^{b} .
\end{array}\right.
$$

Figure: Ω in 2 D

Figure: Ω in 3D

For every ε, let

$$
\omega_{\varepsilon}^{\prime}=\bigcup_{j \in J_{\varepsilon}} \omega_{\varepsilon}^{j},
$$

where $J_{\varepsilon} \subset \mathbb{N}$ is a (finite or infinite) family of indices, and $\omega_{\varepsilon}^{j} \subset \mathbb{R}^{N-1}$ is an open bounded set such that

$$
\left\{\begin{array}{l}
\operatorname{diam}\left(\omega_{\varepsilon}^{j}\right) \leq \varepsilon \quad \forall j \in J_{\varepsilon}, \\
\omega_{\varepsilon}^{j} \cap \omega_{\varepsilon}^{k}=\emptyset \quad \forall j, k \in J_{\varepsilon}, \quad j \neq k
\end{array}\right.
$$

Moreover, we assume that

$$
\chi_{\omega_{\varepsilon}^{\prime}} \rightharpoonup \theta \text { weakly-star in } L^{\infty}\left(\mathbb{R}^{N-1}\right), \text { as } \varepsilon \rightarrow 0
$$

with

$$
\theta\left(x^{\prime}\right) \geq \theta_{0}>0, \text { a.e. } x^{\prime} \in \mathbb{R}^{N-1} .
$$

No periodicity assumption is required and no regularity on $\partial \omega_{\varepsilon}^{j}$ needs. For every ε, let Q_{ε} be the "forest of cylinders" with cross-sections ω_{ε}^{j}, $j \in J_{\varepsilon}$, and infinite height, i.e.

$$
Q_{\varepsilon}=\omega_{\varepsilon}^{\prime} \times \mathbb{R}
$$

We put

$$
\Omega_{\varepsilon}^{a}=Q_{\varepsilon} \cap \Omega^{a}, \quad \Sigma_{\varepsilon}^{0}=Q_{\varepsilon} \cap \Sigma^{0}, \quad \Omega_{\varepsilon}=\Omega_{\varepsilon}^{a} \cup \Sigma_{\varepsilon}^{0} \cup \Omega^{b} .
$$

Figure: The comb in 2D

Figure: The brush in 3D

Remark Previous assumptions on the cross-sections of the cylinders are satisfied in the periodic case. Namely, let

$$
\left.l_{i}>0, \quad i=1, \cdots, N-1, \quad Y^{\prime}=\prod_{i=1}^{N-1}\right] 0, l_{i}[,
$$

and let $\omega^{\prime} \subseteq Y^{\prime}$ be an open set. Then ω_{ε}^{k} defined as

$$
\omega_{\varepsilon}^{k}=\varepsilon \omega^{\prime}+\varepsilon\left(k_{1} 1_{1}, \cdots, k_{N-1} I_{N-1}\right), \quad \forall k=\left(k_{1}, \cdots, k_{N-1}\right) \in \mathbb{Z}^{N-1},
$$

and $\omega_{\varepsilon}^{\prime}$ defined as

$$
\omega_{\varepsilon}^{\prime}=\bigcup_{k \in \mathbb{Z}^{N-1}} \omega_{\varepsilon}^{k}
$$

satisfy previous assumptions with

$$
\theta=\frac{\left|\omega^{\prime}\right|}{\left|Y^{\prime}\right|} .
$$

One can have $\omega^{\prime}=Y^{\prime}$; then $\theta=1$.

References

䡒 Y．Achdou，O．Pironneau，and F．Valentin，Effective boundary conditions for laminar flows over periodic rough boundaries，J．Comput．Phys．， 147 （1998），pp．187－218．
囯 S．Aiyappan，A．K．Nandakumaran，and R．Prakash， Generalization of unfolding operator for highly oscillating smooth boundary domains and homogenization，Calc．Var．Partial Differ． Equ．，Article in Press．
R．Gllaire and M．Amar，Boundary layer tails in periodic homogenization，ESAIM Control Optim．Calc．Var．， 4 （1999）， pp．209－243．
囲 Y．Amirat，O．Bodart，U．De Maio，and A．Gaudiello， Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary，SIAM J．Math．Anal． 35 （2004），1598－1616．
－Y．Amirat，O．Bodart，U．De Maio，and A．Gaudiello， Effective boundary condition for Stokes flow over a very rough surface，J．Differential Equations， 254 （2013），pp．3395－3430．

雷 Y. Amirat, B. Climent, E. Fernández-Cara, and J. Simon, The Stokes equations with Fourier boundary conditions on a wall with asperities, Math. Methods Appl. Sci., 24 (2001), pp. 255-276.
N. Ansini and A. Braides, Homogenization of oscillating boundaries and applications to thin films, J. Anal. Math., 83 (2001), pp. 151-182.
J. M. Arrieta and M. Villanueva-Pesqueira, Thin domains with doubly oscillatory boundary, Math. Methods Appl. Sci., 37 (2014), pp. 158-166.
L. Baffico and C. Conca, Homogenization of a transmission problem in solid mechanics, J. Math. Anal. Appl., 233 (1999), pp. 659-680.

- M. Baía and E. Zappale, A note on the 3D-2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile, Appl. Anal. 86 (2007), n. 5, 555-575.
軎 D. Blanchard, L. Carbone, and A. Gaudiello,
Homogenization of a monotone problem in a domain with oscillating boundary, M2AN Math. Model. Numer. Anal. 33 (1999) nn 1057-1070
D. Blanchard, A. Gaudiello, and G. Griso, Junction of a periodic family of elastic rods with a 3d plate. I, J. Math. Pures Appl. (9), 88 (2007), pp. 1-33.
(D. Blanchard, A. Gaudiello, and G. Griso, Junction of a periodic family of elastic rods with a thin plate. II, J. Math. Pures Appl. (9), 88 (2007), 149-190.
D. Blanchard, A. Gaudiello, and T.A. Mel'nyk, Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate, SIAM J. Math. Anal., 39 (2008), pp. 1764-1787.
國 D. Blanchard, A. Gaudiello, and J. Mossino, Highly oscillating boundaries and reduction of dimension: the critical case, Anal. Appl. (Singap.), 5 (2007), 137-163.
(R. Blanchard and G. Griso, Microscopic effects in the homogenization of the junction of rods and a thin plate, Asymptot. Anal., 56 (2008), pp. 1-36.
回 J.F. Bonder, R. Orive, and J.D. Rossi, The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear Anal. 67 (2007), 4, pp. 1173-1180.

國 A．Braides and V．Chiadò Piat，Homogenization of networks in domains with oscillating boundaries，Appl．Anal．，（2018）， Article in Press．
A．Braides，I．Fonseca，G．Francfort，3D－2D Asymptotic analysis for inhomogeneous thin films，Indiana Univ．Math．J． 49 （2000），4，1367－1404．
囦 R．Brizzi and J．－P．Chalot，Homogénéisation de frontières， Ph．D．Thesis，Université de Nice， 1978.
囯 G．Buttazzo and R．V．Kohn，Reinforcement by a thin layer with oscillating thickness，Appl．Math．Optim．， 16 （1987）， pp．247－261．
囯 J．Casado－Díaz，E．Fernández－Cara，and J．Simon，Why viscous fluids adhere to rugose walls：A mathematical explanation，J．Differential Equations， 189 （2003），pp．526－537．

目 J．Casado－Díaz，M．Luna－Laynez，and F．J．SuÁrez－Grau， Asymptotic behavior of the Navier－Stokes system in a thin domain with Navier condition on a slightly rough boundary，SIAM J．Math．Anal．， 45 （2013），pp．1641－1674．
R．G．Chechkin，C．D’Apice，U．De Maio，and A．L． Piatnitski，On the rate of convergence of solutions in domain with random multilevel oscillating boundary，Asymptot．Anal．87， （2014），pp．1－28
囯 G．A．Chechkin，A．Friedman，and A．L．Piatnitski，The boundary－value problem in domains with very rapidly oscillating boundary，J．Math．Anal．Appl．， 231 （1999），pp．213－234．
圊 A．Corbo Esposito，P．Donato，A．Gaudiello，and
C．Picard，Homogenization of the p－Laplacian in a domain with oscillating boundary，Comm．Appl．Nonlinear Anal．， 4 （1997）， pp．1－23．
目 A．Damlamian and K．Pettersson，Homogenization of oscillating boundaries，Discrete Contin．Dyn．Syst．， 23 （2009）， pp．197－219．

囯 C．D＇Angelo，G．Panasenko，and A．Quarteroni， Asymptotic numerical derivation of the Robin－type coupling conditions at reservoir－capillaries interface，Appl．Anal． 92 （2013）， 1，pp．158－171．
目 C．D＇Apice，U．De Maio，T．A．Mel＇nyk，Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3：2：2， Netw．Heterog．Media 2 （2007），pp．255－277
圊 U．De Maio，T．Durante，and T．A．Mel＇nyk，Asymptotic approximation for the solution to the Robin problem in a thick multi－level junction，Math．Models Methods Appl．Sci．， 15 （2005）， pp．1897－1921．
围 U．De Maio，A．Gaudiello，and C．Lefter，Optimal control for a parabolic problem in a domain with highly oscillating boundary， Applicable Anal．， 83 （2004），pp．1245－1264．
䍰 U．De Maio，A．K．Nandakumaran，and C．Perugia，Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition，Evol． Equ．Control Theory 4 （2015），325－346．

囯 T．Durante，L．Faella，and C．Perugia，Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boundary，NoDEA Nonlinear Differential Equations Appl．， 14 （2007），pp．455－489．
T．Durante and T．A．Mel＇nyk，Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 ： 2 ：1，ESAIM Control Optim．Calc．Var．， 18 （2012），2， 583－610，
國 I．E．Egorova and E．Ya．Khruslov，Asymptotic behavior of solutions of the second boundary value problem in domains with random thin cracks．（Russian），Teor．Funktsii Funktsional．Anal．i Prilozhen， 52 （1989），pp．91－103．English translation：J．Soviet Math．， 52 （1990），pp．3412－3421．
囯 A．Gaudiello，Asymptotic behaviour of non－homogeneous Neumann problems in domains with oscillating boundary， Ricerche Mat． 43 （1994），2，pp．239－292．
直 A．Gaudiello and O．Guibé，Homogenization of an elliptic second－order problem with $L \log L$ data in a domain with oscillating boundary，Commun．Contemp．Math．， 15 （2013）， 1－13．
A. Gaudiello and O. Guibé, Homogenization of an evolution problem with $L \log L$ data in a domain with oscillating boundary, Ann. Mat. Pura Appl. (4) 197 (2018), 1, pp. 153-169.
R A. Gaudiello, O. Guibé, and F. Murat, Homogenization of the brush problem with a source term in L^{1}, Arch. Rational Mech. Anal. 225 (2017), pp. 1-64.

- A. Gaudiello and T. A. Mel'nyk, Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary, J. Differential Equations 265 (2018), pp. 5419-5454.
(1. A. Gaudiello and A. Sili, Homogenization of highly oscillating boundaries with strongly contrasting diffusivity, SIAM J. Math. Anal., 47 (2015), pp. 1671-1692.
R M. Lenczner, Multiscale model for atomic force microscope array mechanical behavior, Appl. Phys. Lett. 90 (2007).
R R. Mahadevan, A.K. Nandakumaran, and R. Prakash, Homogenization of an Elliptic Equation in a Domain with Oscillating Boundary with Non-homogeneous Non-linear Boundary Conditions Appl. Math. Optim. Article in Press.
T.A. Mel'nyk, Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwendungen, 18 (1999), pp. 953-975.
(T.A. Mel'nyk, I.A. Nakvasiuk, and W.L. Wendland, Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem, Math. Methods Appl. Sci. 34 (2011), 7, 758-775.
围 T.A. Mel'nyk and S.A. NaZARov, Asymptotic behavior of the Neumann spectral problem solution in a domain of "tooth comb" type, J. Math. Sci., 85 (1997), pp. 2326-2346.
围 J. Nevard and J.B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math., 57 (1997), pp. 1660-1686.
- A. K. Nandakumaran, R. Prakash, and B. C. Sardar, Periodic controls in an oscillating domain: controls via unfolding and homogenization, SIAM J. Control Optim. 53 (2015), 5, pp. 3245-3269.
- O. Pironneau, Optimal shape design for elliptic systems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984.
囯 R. Prakash, Optimal control problem for the time-dependent Kirchhoff-Love plate in a domain with rough boundary, Asymptot. Anal. 81 (2013), 3-4, pp. 337-355.

