Low-frequency vibrations of strongly inhomogeneous layered elastic plates
L.A. Prikazchikova

School of Computing and Mathematics, Keele University, UK

Contents

- Introduction with practical motivation
- In-plane vector problem
- Multi-parametric analysis of a dispersion relation
- Two-mode approximation
- Sketch of asymptotic PDEs
- Out-of-plane (anti-plane) scalar problem
- Multi-parametric analysis of a dispersion relation
- PDEs for the lowest shear mode
- Out-of-plane problem for asymmetric plate
- Two-mode approximation

High-contrast layered structures

- Photovoltaic panels $\left(\mu_{\mathrm{c}} / \mu_{\mathrm{s}} \sim 10^{-2}-10^{-5}\right)$

High-contrast layered structures

- Photovoltaic panels $\left(\mu_{\mathrm{c}} / \mu_{\mathrm{s}} \sim 10^{-2}-10^{-5}\right)$

- Laminated glass

Sandwich structures

- Classical sandwich plate

Preliminary remarks

Consider bending of homogeneous isotropic plate of width 2 h
Rayleigh-Lamb dispersion equation

$$
\begin{gathered}
\gamma^{4} \frac{\sinh \alpha}{\alpha} \cosh \beta-\beta^{2} \mathrm{~K}^{2} \cosh \alpha \frac{\sinh \beta}{\beta}=0, \quad \text { where } \\
\alpha^{2}=\mathrm{K}^{2}-\varkappa^{2} \Omega^{2}, \quad \beta^{2}=\mathrm{K}^{2}-\Omega^{2}, \quad \gamma^{2}=\mathrm{K}^{2}-\frac{1}{2} \Omega^{2}, \quad \varkappa=\frac{\mathrm{c}_{2}}{\mathrm{c}_{1}}
\end{gathered}
$$

Scaled wave number and frequency

$$
\mathrm{K}=\mathrm{kh}, \quad \Omega=\frac{\omega \mathrm{h}}{\mathrm{c}_{2}}
$$

Long wave approximations $(\mathrm{K} \ll 1)$

\bigcirc
Low-frequency $(\Omega \ll 1)$
At the leading order $\Omega \sim \mathrm{K}^{2}$ or

$$
\mathrm{D}_{\mathrm{a}} \frac{\mathrm{~d}^{4} \mathrm{w}}{\mathrm{~d} \xi^{4}}-\Omega^{2} \mathrm{w}=0, \quad \xi=\frac{\mathrm{x}}{\mathrm{~h}}
$$

Kirchhoff equation \equiv leading order approximation
\bigcirc High-frequency approximations near cut-off frequencies $\Omega_{*} \sim 1$ $\left(\left|\Omega-\Omega_{*}\right| \ll 1\right)$
At the leading order $\mathrm{K} \sim\left|\Omega^{2}-\Omega_{*}^{2}\right|^{\frac{1}{2}}$

$$
\mathrm{P}_{\mathrm{a}} \frac{\mathrm{~d}^{2} \mathrm{w}}{\mathrm{~d} \xi^{2}}+\left(\Omega^{2}-\Omega_{*}^{2}\right) \mathrm{w}=0
$$

No overlap frequency regions \Rightarrow
No chance for 2-mode uniform approximations!
J. Kaplunov et al, Dynamics of thin walled elastic bodies, 1998

Composite (non-uniformly asymptotic) plate theories

Originate from Timoshenko-Reissner-Mindlin ad hoc theories.

$$
\overbrace{D_{\mathrm{a}} \frac{\mathrm{~d}^{4} \mathrm{~W}}{\mathrm{~d} \xi^{4}}}^{\text {low-frequency }}-\underbrace{\Omega^{2} \mathrm{~W}}_{\text {high-frequency }}+\mathrm{B}_{\mathrm{a}} \Omega^{2} \frac{\mathrm{~d}^{2} \mathrm{~W}}{\mathrm{~d} \xi^{2}}+\mathrm{C}_{\mathrm{a}} \Omega^{4} \mathrm{~W},
$$

$\mathrm{B}_{\mathrm{a}}, \mathrm{C}_{\mathrm{a}}, \mathrm{D}_{\mathrm{a}}$ - constants
V.L. Berdichevsky. Variational principles of continuum mechanics: I.

Fundamentals, 2009
K.C. Le. Vibrations of shells and rods, 2012
I.V. Andrianov et al,Asymptotical mechanics of thin-walled structures, 2013

Contents

In-plane vector problem

Anti-plane scalar problem

Anti-plane scalar problem for asymmetric plates

In-plane vibrations of three-layered plates

Statement of the problem

Equations of motion

$$
\sigma_{\mathrm{j}, \mathrm{j}}^{\mathrm{q}}=\rho_{\mathrm{q}} \ddot{\mathrm{u}}_{\mathrm{i}}^{\mathrm{q}}, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s} \quad \text { for core and skin layers }
$$

Boundary and continuity conditions

$$
\begin{aligned}
& \sigma_{12}^{\mathrm{s}}=0, \quad \sigma_{22}^{\mathrm{s}}=0 \quad \text { at } \quad \mathrm{x}_{2}=\mathrm{h}_{\mathrm{c}}+\mathrm{h}_{\mathrm{s}} \\
& \sigma_{12}^{\mathrm{c}}=\sigma_{12}^{\mathrm{s}}, \quad \sigma_{22}^{\mathrm{c}}=\sigma_{22}^{\mathrm{s}} \quad \text { and } \quad \mathrm{u}_{1}^{\mathrm{c}}=\mathrm{u}_{1}^{\mathrm{s}}, \quad \mathrm{u}_{2}^{\mathrm{c}}=\mathrm{u}_{2}^{\mathrm{s}} \quad \text { at } \quad \mathrm{x}_{2}=\mathrm{h}_{\mathrm{c}}
\end{aligned}
$$

Dispersion relation for antisymmetric motion

$$
\begin{aligned}
& 4 \mathrm{~K}^{2} \mathrm{~h}^{3} \alpha_{2} \beta_{2} \mathrm{~F}_{4}\left[\mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{C}_{\beta_{1}} \mathrm{~S}_{\alpha_{1}}-2 \alpha_{1} \beta_{1}(\mu-1) \mathrm{F}_{3} \mathrm{C}_{\alpha_{1}} \mathrm{~S}_{\beta_{1}}\right] \\
& +\mathrm{h} \alpha_{2} \beta_{2} \mathrm{C}_{\alpha_{2}} \mathrm{C}_{\beta_{2}}\left[4 \alpha_{1} \beta_{1} \mathrm{~K}^{2}\left(\mathrm{~h}^{4} \mathrm{~F}_{3}^{2}+\mathrm{F}_{4}^{2}(\mu-1)^{2}\right) \mathrm{C}_{\alpha_{1}} \mathrm{~S}_{\beta_{1}}\right. \\
& \left.\quad-\left(4 \mathrm{~K}^{4} \mathrm{~h}^{4} \mathrm{~F}_{2}^{2}+\mathrm{F}_{4}^{2} \mathrm{~F}_{1}^{2}\right) \mathrm{S}_{\alpha_{1}} \mathrm{C}_{\beta_{1}}\right] \\
& +\mathrm{C}_{\beta_{2}} \mathrm{~S}_{\alpha_{2}} \mu \beta_{2}\left(\beta_{2}^{2}-\mathrm{K}^{2} \mathrm{~h}^{2}\right)\left(\beta_{1}^{2}-\mathrm{K}^{2}\right)\left[4 \alpha_{2}^{2} \beta_{1} \mathrm{~K}^{2} \mathrm{~h}^{2} \mathrm{~S}_{\alpha_{1}} \mathrm{~S}_{\beta_{1}}-\mathrm{F}_{4}^{2} \alpha_{1} \mathrm{C}_{\alpha_{1}} \mathrm{C}_{\beta_{1}}\right. \\
& +\mathrm{C}_{\alpha_{2}} \mathrm{~S}_{\beta_{2}} \mu \alpha_{2}\left(\beta_{2}^{2}-\mathrm{K}^{2} \mathrm{~h}^{2}\right)\left(\beta_{1}^{2}-\mathrm{K}^{2}\right)\left[4 \alpha_{1} \beta_{2}^{2} \mathrm{~K}^{2} \mathrm{~h}^{2} \mathrm{C}_{\alpha_{1}} \mathrm{C}_{\beta_{1}}-\mathrm{F}_{4}{ }^{2} \beta_{1} \mathrm{~S}_{\alpha_{1}} \mathrm{~S}_{\beta_{1}}\right. \\
& +\mathrm{h}^{3} \mathrm{~S}_{\alpha_{2}} \mathrm{~S}_{\beta_{2}}\left[\left(4 \alpha_{2}^{2} \beta_{2}^{2} \mathrm{~K}^{2} \mathrm{~F}_{1}^{2}+\mathrm{K}^{2} \mathrm{~F}_{4}^{2} \mathrm{~F}_{2}^{2}\right) \mathrm{C}_{\beta_{1}} \mathrm{~S}_{\alpha_{1}}\right. \\
& \left.\quad-\alpha_{1} \beta_{1}\left(16 \alpha_{2}^{2} \beta_{2}^{2}(\mu-1)^{2} \mathrm{~K}^{4}+\mathrm{F}_{4}^{2} \mathrm{~F}_{3}^{2}\right) \mathrm{C}_{\alpha_{1}} \mathrm{~S}_{\beta_{1}}\right]=0
\end{aligned}
$$

Non-dimensional scaled frequency and wave number

$$
\Omega=\frac{\omega \mathrm{h}_{\mathrm{c}}}{\mathrm{c}_{2}^{\mathrm{c}}}, \quad \mathrm{~K}=\mathrm{kh}_{\mathrm{c}}
$$

$\mathrm{F}_{\mathrm{i}}, \quad \mathrm{i}=1 . .4, \quad \alpha_{\mathrm{j}}, \beta_{\mathrm{j}}, \quad \mathrm{j}=1,2 \quad$ - functions of Ω and K,
$\mathrm{C}_{\alpha_{\mathrm{j}}}, \mathrm{C}_{\beta_{\mathrm{j}}}, \mathrm{S}_{\alpha_{\mathrm{j}}}, \mathrm{S}_{\beta_{\mathrm{j}}} \quad$ - hyperbolic functions
P. C. Y. Lee et al, Journal of Elasticity, 1979.

Dispersion curves

No contrast

Effect of contrast

1D eigenvalue problem for shear cut-off (antisymmetric motion)

Setting $\partial \mathrm{u}_{1}^{\mathrm{q}} / \partial \mathrm{x}_{1}=\mathrm{u}_{2}^{\mathrm{q}}=0$ in the
above problem we have $\left(u_{1}^{q}=u_{1}^{q}\left(x_{2}\right)\right)$

Equations of motion

$$
\frac{\mathrm{d}^{2} \mathrm{u}_{1}^{\mathrm{q}}}{\mathrm{~d} \mathrm{x}_{2}^{2}}+\frac{\omega^{2}}{\mathrm{c}_{2}^{\mathrm{q}}} \mathrm{u}_{1}^{\mathrm{q}}=0, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s}
$$

subject to the boundary and continuity conditions

$$
\begin{aligned}
& \frac{\mathrm{d}_{1}^{\mathrm{s}}}{\mathrm{dx}_{2}}=0 \quad \text { at } \quad \mathrm{x}_{2}= \pm\left(\mathrm{h}_{\mathrm{c}}+\mathrm{h}_{\mathrm{s}}\right), \\
& \mu_{\mathrm{c}} \frac{\mathrm{~d}_{1}^{\mathrm{c}}}{\mathrm{dx}_{2}}=\mu_{\mathrm{s}} \frac{\mathrm{du}_{1}^{\mathrm{s}}}{\mathrm{dx}_{2}}, \quad \mathrm{u}_{1}^{\mathrm{c}}=\mathrm{u}_{1}^{\mathrm{s}} \quad \text { at } \quad \mathrm{x}_{2}= \pm \mathrm{h}_{\mathrm{c}} .
\end{aligned}
$$

Cut-off shear frequencies

Equation for cut-off shear frequencies:

$$
\tan (\Omega) \tan \left(\sqrt{\frac{\mu}{\rho}} \mathrm{h} \Omega\right)=\sqrt{\mu \rho}
$$

Condition for a first shear cut-off frequency to be small

$$
\rho \ll \mathrm{h} \ll \mu^{-1}, \quad \Omega \approx\left(\frac{\rho}{\mathrm{~h}}\right)^{1 / 2},
$$

where

$$
\mu=\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{s}}}, \quad \rho=\frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{s}}}, \quad \mathrm{~h}=\frac{\mathrm{h}_{\mathrm{s}}}{\mathrm{~h}_{\mathrm{c}}} .
$$

J. Kaplunov et al, Journal of Sound and Vibration, 2016.

Practical examples ($\rho \ll \mathrm{h} \ll \mu^{-1}$)
A. Photovoltaic panels

B. Laminated glass
$\mu \ll 1, \mathrm{~h} \sim \mu^{-1 / 2}, \rho \sim \mu$
stiff skin layers and light thin core layer
C. Sandwich structures
$\mu \ll 1, \mathrm{~h} \sim \mu, \rho \sim \mu^{2}$
stiff thin skin layers and light core layer

Unusually low first shear cut-off frequencies!

Long-wave low-frequency asymptotic approximation

For $\mathrm{K} \ll 1$ and $\Omega \ll 1$

$$
\begin{gathered}
\gamma_{1} \Omega^{2}+\gamma_{2} K^{4}+\gamma_{3} K^{2} \Omega^{2}+\gamma_{4} K^{6}+\gamma_{5} \Omega^{4}+\gamma_{6} K^{4} \Omega^{2}+\gamma_{7} K^{8}+ \\
\gamma_{8} K^{2} \Omega^{4}+\gamma_{9} K^{2} \Omega^{6}+\gamma_{10} \Omega^{6}+\ldots=0
\end{gathered}
$$

Multi-parametric analysis

$$
\mu \ll 1, \quad \mathrm{~h} \sim \mu^{\mathrm{a}}, \quad \rho \sim \mu^{\mathrm{b}}
$$

Expanding coefficients

$$
\gamma_{\mathrm{i}} \rightarrow \mathrm{G}_{\mathrm{i}} \mu^{\mathrm{c}}, \quad \mathrm{G}_{\mathrm{i}} \sim 1
$$

A. Photovoltaic panels

Plate with stiff outer layers and light core $\mu \ll 1, \quad \mathrm{~h} \sim 1, \quad \rho \sim \mu$

Retain leading order terms for both modes:

1. fundamental mode $\left(\Omega \sim \mathrm{K}^{2}\right)$
2. shear mode with cut-off $\Omega_{\mathrm{sh}} \sim \sqrt{\mu}$

Five term two-mode approximation

$$
\begin{aligned}
& \mathrm{G}_{1} \mu \Omega^{2}+\mathrm{G}_{2} \mu \mathrm{~K}^{4} \\
& +\mathrm{G}_{3} \mathrm{~K}^{2} \Omega^{2}+\mathrm{G}_{4} \mathrm{~K}^{6}+\mathrm{G}_{5} \Omega^{4}=0
\end{aligned}
$$

Local approximations

Three local approximations can be obtained from the two-mode approximation

Local approximations for the fundamental mode

In the vicinity of zero frequency

$$
\mathrm{G}_{1} \Omega^{2}+\mathrm{G}_{2} \mathrm{~K}^{4}=0, \quad 0<\mathrm{K} \ll \sqrt{\mu}, \quad \Omega \ll \mu
$$

At higher frequencies, including the vicinity of shear cut-off $\Omega_{\mathrm{sh}} \sim \sqrt{\mu}$

$$
\mathrm{G}_{3} \Omega^{2}+\mathrm{G}_{4} \mathrm{~K}^{4}=0, \quad \sqrt{\mu} \ll \mathrm{~K} \ll 1, \quad \mu \ll \Omega \ll 1
$$

Kirchhoff theory already does not work at $\Omega \sim \mu$!

Uniform approximation for the fundamental mode

Taking both local approximations we derive a uniform one:

$$
\mathrm{G}_{1} \mu \Omega^{2}+\mathrm{G}_{2} \mu \mathrm{~K}^{4}+\mathrm{G}_{3} \mathrm{~K}^{2} \Omega^{2}+\mathrm{G}_{4} \mathrm{~K}^{6}=0
$$

Also valid in the transition region $\Omega \sim \mu, \mathrm{K} \sim \sqrt{\mu}$

Near cut-off approximation

For $\Omega \sim \sqrt{\mu}, \mathrm{K} \ll 1$

$$
\mathrm{G}_{1} \mu+\mathrm{G}_{3} \mathrm{~K}^{2}+\mathrm{G}_{5} \Omega^{2}=0
$$

Displacement u_{1} near shear cut-off frequency

Horizontal displacement u_{1} and approximation for $\mu \approx 0.01$ in shear mode $(K=0)$

At the leading order
$\mathrm{u}_{1}= \begin{cases}\frac{\xi}{1+\mathrm{h}}, & \text { for } \xi=0 . .1 \\ \frac{1}{1+\mathrm{h}}, & \text { for } \xi=1 . .1+\mathrm{h}\end{cases}$
where

$$
\xi=\frac{\mathrm{x}_{1}}{\mathrm{~h}_{\mathrm{c}}}
$$

Displacement u_{1} near shear cut-off frequency

Displacement u_{1} and approximation for $\mu \approx 0.01$ on fundamental mode (at $\mathrm{K}=0.45$)

B. Laminated glass. Two-mode approximation

$\Omega_{\mathrm{sh}} \sim \mu^{1 / 2}$ leads to the two-mode uniform approximation

$$
\mathrm{G}_{1} \mu^{3} \Omega^{2}+\mathrm{G}_{2} \mu^{3 / 2} \mathrm{~K}^{4}+\mathrm{G}_{3} \mu^{3 / 2} \mathrm{~K}^{2} \Omega^{2}+\mathrm{G}_{4} \mathrm{~K}^{6}+\mathrm{G}_{5} \mu^{2} \Omega^{4}=0
$$

C. Sandwich structure. Two-mode approximation

Plate with stiff outer layers and light core $\mu \ll 1, \quad \mathrm{~h} \sim \mu, \quad \rho \sim \mu^{2}$

Local approximation: fundamental mode $(\Omega \ll \sqrt{\mu})$ and shear mode $\left(\Omega_{\mathrm{sh}} \sim \sqrt{\mu}\right)$

> Two-mode approximation

$$
\begin{aligned}
& \mathrm{G}_{1} \mu \Omega^{2}+\mathrm{G}_{2} \mu^{2} \mathrm{~K}^{4} \\
& +\mu \mathrm{K}^{2} \Omega^{2}\left(\mathrm{G}_{3}+\frac{\rho_{\mu}}{\mathrm{h}_{\mu}} \mathrm{G}_{8}\right) \\
& +\mathrm{G}_{5} \Omega^{4}=0
\end{aligned}
$$

Composite non-uniform approximations!

Transition from a uniform to non-uniform approximation

Where is transition from uniform approximation to a composite (non-uniform) one?

$$
\rho=\frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{s}}} \ll 1, \quad \mu=\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{s}}} \sim \rho, \quad \mathrm{~h}=\frac{\mathrm{h}_{\mathrm{s}}}{\mathrm{~h}_{\mathrm{c}}} \sim \rho^{\mathrm{a}}, \quad 0 \leqslant \mathrm{a}<1
$$

Small thickness shear cut-off frequency

$$
\Omega_{\mathrm{sh}} \approx\left(\frac{\rho}{\mathrm{~h}}\right)^{1 / 2} \sim \rho^{(1-\mathrm{a}) / 2} \ll 1
$$

Transition from a uniform to non-uniform approximation

- Uniform $0 \leq \mathrm{a} \leq 1 / 3$

$$
\rho^{1-\mathrm{a}} \mathrm{G}_{1} \Omega^{2}+\rho^{1-\mathrm{a}} \mathrm{G}_{2} \mathrm{~K}^{4}+\mathrm{G}_{3} \mathrm{~K}^{2} \Omega^{2}+\frac{1}{3} \rho^{2 \mathrm{a}} \mathrm{G}_{2} \mathrm{~K}^{6}+\mathrm{G}_{5} \Omega^{4}=0
$$

- Non-uniform $1 / 3<\mathrm{a}<1$

$$
\rho^{1-\mathrm{a}} \mathrm{G}_{1} \Omega^{2}+\rho^{1-\mathrm{a}} \mathrm{G}_{2} \mathrm{~K}^{4}+\mathrm{G}_{3} \mathrm{~K}^{2} \Omega^{2}+\mathrm{G}_{5} \Omega^{4}=0
$$

In progress: 2D PDEs for strongly inhomogeneous plates

Uniformly asymptotic

$$
\mathrm{G}_{1} \mu \mathrm{u}_{\mathrm{tt}}+\mathrm{G}_{2} \mu \Delta^{2} \mathrm{u}+\mathrm{G}_{3} \Delta \mathrm{u}_{\mathrm{tt}}+\mathrm{G}_{4} \Delta^{3} \mathrm{u}+\mathrm{G}_{5} \mathrm{u}_{\mathrm{tttt}}=0
$$

Composite

$$
\mathrm{G}_{1} \mu \mathrm{u}_{\mathrm{tt}}+\mathrm{G}_{2} \mu^{2} \Delta^{2} \mathrm{u}+\mathrm{G}_{3} \mu \Delta \mathrm{u}_{\mathrm{tt}}+\mathrm{G}_{5} \mathrm{u}_{\mathrm{tttt}}+\mathrm{G}_{8} \Delta \mathrm{u}_{\mathrm{tttt}}=0
$$

Not easy to justify!

Contents

In-plane vector problem

Anti-plane scalar problem

Anti-plane scalar problem for asymmetric plates

Anti-plane antisymmetric motion

Equations of motion

$$
\frac{\partial \sigma_{13}^{\mathrm{q}}}{\partial \mathrm{x}_{1}}+\frac{\partial \sigma_{23}^{\mathrm{q}}}{\partial \mathrm{x}_{2}}-\rho_{\mathrm{q}} \frac{\partial^{2} \mathrm{u}_{\mathrm{q}}}{\partial \mathrm{t}^{2}}=0, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s},
$$

with

$$
\sigma_{\mathrm{i} 3}^{\mathrm{q}}=\mu_{\mathrm{q}} \frac{\partial \mathrm{u}_{\mathrm{q}}}{\partial \mathrm{x}_{\mathrm{i}}}, \quad \mathrm{i}=1,2,
$$

u_{q} are out of plane displacements, $\sigma_{\mathrm{i} 3}^{\mathrm{q}}$ are shear stresses.

Dispersion relation

Continuity conditions along interfaces $\mathrm{x}_{2}= \pm \mathrm{h}_{\mathrm{c}}$

$$
\sigma_{23}^{\mathrm{c}}=\sigma_{23}^{\mathrm{s}} \quad \text { and } \quad \mathrm{u}_{\mathrm{c}}=\mathrm{u}_{\mathrm{s}}
$$

Traction-free boundary conditions

$$
\sigma_{23}^{\mathrm{s}}=0 \quad \text { at } \quad \mathrm{x}_{2}= \pm\left(\mathrm{h}_{\mathrm{c}}+\mathrm{h}_{\mathrm{s}}\right)
$$

Equations of motion

$$
\Delta u_{\mathrm{q}}-\frac{1}{\left(\mathrm{c}_{2}^{\mathrm{q}}\right)^{2}} \frac{\partial^{2} \mathrm{u}_{\mathrm{q}}}{\partial \mathrm{t}^{2}}=0, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s} .
$$

Dispersion relation

$$
\mu \alpha_{1} \cosh \left(\alpha_{1}\right) \cosh \left(\alpha_{2} \mathrm{~h}\right)+\alpha_{2} \sinh \left(\alpha_{1}\right) \sinh \left(\alpha_{2} \mathrm{~h}\right)=0,
$$

with

$$
\begin{gathered}
\alpha_{1}=\sqrt{\mathrm{K}^{2}-\Omega^{2}}, \quad \alpha_{2}=\sqrt{\mathrm{K}^{2}-\frac{\mu}{\rho} \Omega^{2}} \\
\Omega=\frac{\omega \mathrm{h}_{\mathrm{c}}}{\mathrm{c}_{2}^{\mathrm{c}}}, \quad \mathrm{~K}=\mathrm{kh}_{\mathrm{c}}, \quad \mathrm{~h}=\frac{\mathrm{h}_{\mathrm{s}}}{\mathrm{~h}_{\mathrm{c}}}, \quad \mu=\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{s}}}, \quad \rho=\frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{s}}} .
\end{gathered}
$$

Exact solutions for displacements and stresses

$$
\mathrm{u}_{\mathrm{c}}=\mathrm{h}_{\mathrm{c}} \frac{\sinh \left(\alpha_{1} \xi_{2 \mathrm{c}}\right)}{\alpha_{1}}, \quad \sigma_{13}^{\mathrm{c}}=\mathrm{i} \mu_{\mathrm{c}} \mathrm{~K} \frac{\sinh \left(\alpha_{1} \xi_{2 \mathrm{c}}\right)}{\alpha_{1}}, \quad \sigma_{23}^{\mathrm{c}}=\mu_{\mathrm{c}} \cosh \left(\alpha_{1} \xi_{2 \mathrm{c}}\right)
$$

and

$$
\mathrm{u}_{\mathrm{s}}=\mathrm{h}_{\mathrm{c}} \beta\left(\cosh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]-\tanh \left[\alpha_{2}(\mathrm{~h}+1)\right] \sinh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]\right)
$$

$$
\sigma_{13}^{\mathrm{s}}=\mathrm{i} \mu_{\mathrm{s}} \mathrm{~K} \beta\left(\cosh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]-\tanh \left[\alpha_{2}(\mathrm{~h}+1)\right] \sinh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]\right),
$$

$$
\sigma_{23}^{\mathrm{s}}=\mu_{\mathrm{s}} \alpha_{2} \beta\left(\sinh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]-\tanh \left[\alpha_{2}(\mathrm{~h}+1)\right] \cosh \left[\alpha_{2}\left(\mathrm{~h} \xi_{2 \mathrm{~s}}+1\right)\right]\right),
$$

where

$$
\beta=\frac{\sinh \alpha_{1}}{\alpha_{1}\left(\cosh \alpha_{2}-\sinh \alpha_{2} \tanh \left[\alpha_{2}(\mathrm{~h}+1)\right]\right)}
$$

Dimensionless variables

$$
\begin{array}{ll}
\xi_{2 \mathrm{c}}=\frac{\mathrm{x}_{2}}{\mathrm{~h}_{\mathrm{c}}}, & 0 \leq \mathrm{x}_{2} \leq \mathrm{h}_{\mathrm{c}} \\
\xi_{2 \mathrm{~s}}=\frac{\mathrm{x}_{2}-\mathrm{h}_{\mathrm{c}}}{\mathrm{~h}_{\mathrm{s}}}, & \mathrm{~h}_{\mathrm{c}} \leq \mathrm{x}_{2} \leq \mathrm{h}_{\mathrm{c}}+\mathrm{h}_{\mathrm{s}}
\end{array}
$$

Long-wave low-frequency limit

Polynomial dispersion relation

$$
\mu+\gamma_{1} K^{2}+\gamma_{2} K^{4}+\gamma_{3} K^{2} \Omega^{2}+\gamma_{4} \Omega^{2}+\gamma_{5} \Omega^{4}+\cdots=0
$$

with

$$
\begin{aligned}
& \gamma_{1}=\frac{\mu}{2}\left(1+\mathrm{h}^{2}\right)+\mathrm{h} \\
& \gamma_{2}=\frac{\mu}{24}\left(1+6 \mathrm{~h}^{2}+\mathrm{h}^{4}\right)+\frac{\mathrm{h}}{6}\left(1+\mathrm{h}^{2}\right) \\
& \gamma_{3}=-\frac{\mu}{12}\left(1+3 \mathrm{~h}^{2}\right)-\frac{\mathrm{h}}{6}-\frac{\mu \mathrm{h}}{12 \rho}(2+3 \mu \mathrm{~h})-\frac{\mu \mathrm{h}^{3}}{12 \rho}(4+\mu \mathrm{h}), \\
& \gamma_{4}=-\frac{\mu}{2}-\frac{\mu \mathrm{h}}{\rho}\left(1+\frac{\mu \mathrm{h}}{2}\right) \\
& \gamma_{5}=\frac{\mu}{24}+\frac{\mu \mathrm{h}}{12 \rho}(2+3 \mu \mathrm{~h})+\frac{\mu^{2} \mathrm{~h}^{3}}{24 \rho^{2}}(4+\mu \mathrm{h}) .
\end{aligned}
$$

Dispersion curves

- No fundamental mode. It appears in case of symmetric motion.
- The lowest cut-off frequency in case of a contrast is $\Omega=0.17$

Consider two setups of the contrast:
A. Photovoltaic panels and B. Sandwich structures

A. Photovoltaic panels. Shortened polynomial dispersion relation

Plate with stiff outer layers and light core $\mu \ll 1, \quad \mathrm{~h} \sim 1, \quad \rho \sim \mu$

$$
\gamma_{1} \sim \gamma_{2} \sim \gamma_{3} \sim \gamma_{4} \sim \gamma_{5} \sim 1
$$

Shortened dispersion relation

$$
\frac{\mu}{\mathrm{h}}+\mathrm{K}^{2}-\frac{1}{\rho_{\mu}} \Omega^{2}=0 .
$$

Scaled dimensionless frequency and wavenumber

$$
\Omega^{2}=\mu^{\alpha} \Omega_{*}^{2} \quad \text { and } \quad \mathrm{K}^{2}=\mu^{\alpha} \mathrm{K}_{*}^{2},
$$

where $\Omega_{*} \sim \mathrm{~K}_{*} \sim 1$ and $0<\alpha \leq 1$.
α covers the whole long-wave low-frequency band, given by $\Omega \ll 1$, and $\mathrm{K} \ll 1$.

Shortened polynomial dispersion relation

Dispersion relation expressed in Ω_{*} and K_{*} becomes

$$
\Omega_{*}^{2}=\rho_{\mu}\left(\mathrm{K}_{*}^{2}+\frac{\mu^{1-\alpha}}{\mathrm{h}}\right) .
$$

At $\alpha<1$ we have $\Omega_{*} \sim \sqrt{\rho_{\mu}} \mathrm{K}_{*}$ or $\omega \sim \mathrm{c}_{2}^{\mathrm{s}} \mathrm{k}$, corresponding to the short-wave limit for stiffer skin layers.

B. Sandwich structure. Shortened polynomial dispersion relation

Plate with stiff outer layers and light core $\mu \ll 1, \quad \mathrm{~h} \sim \mu, \quad \rho \sim \mu^{2}$

$$
\gamma_{1} \sim \gamma_{2} \sim \mu \quad \text { and } \quad \gamma_{3} \sim \gamma_{4} \sim \gamma_{5} \sim 1
$$

Approximate dispersion relation

$$
\mu+\mu\left(\frac{1}{2}+\mathrm{h}_{\mu}\right) \mathrm{K}^{2}-\frac{\mathrm{h}_{\mu}}{6 \rho_{\mu}} \mathrm{K}^{2} \Omega^{2}-\left(\frac{\mu}{2}+\frac{\mathrm{h}_{\mu}}{\rho_{\mu}}\right) \Omega^{2}+\frac{\mathrm{h}_{\mu}}{6 \rho_{\mu}} \Omega^{4}=0
$$

Normalized wavenumber and frequency

$$
\mathrm{K}^{2}=\mu \mathrm{K}_{*}^{2} \quad \text { and } \quad \Omega^{2}=\mu \Omega_{*}^{2},
$$

we obtain
$1+\mu\left(\frac{1}{2}+\mathrm{h}_{\mu}\right) \mathrm{K}_{*}^{2}-\mu \frac{\mathrm{h}_{\mu}}{6 \rho_{\mu}} \mathrm{K}_{*}^{2} \Omega_{*}^{2}-\left(\frac{\mu}{2}+\frac{\mathrm{h}_{\mu}}{\rho_{\mu}}\right) \Omega_{*}^{2}+\mu \frac{\mathrm{h}_{\mu}}{6 \rho_{\mu}} \Omega_{*}^{4}=0$.

Shortened polynomial dispersion relation

Adapt a near cut-off asymptotic expansion in the form

$$
\Omega_{*}^{2}=\Omega_{0}^{2}+\mu \Omega_{1}^{2}+\cdots
$$

where

$$
\Omega_{0}^{2}=\frac{\rho_{\mu}}{\mathrm{h}_{\mu}} \quad \text { and } \quad \Omega_{1}^{2}=\frac{\rho_{\mu}}{\mathrm{h}_{\mu}}\left(\frac{1}{3}+\mathrm{h}_{\mu}\right) \mathrm{K}_{*}^{2}-\frac{1}{3} \frac{\rho_{\mu}^{2}}{\mathrm{~h}_{\mu}^{2}},
$$

leading to the optimal shortened dispersion relation

$$
\left(\mathrm{h}_{\mu}+\frac{1}{3}\right) \mathrm{K}^{2}-\frac{1}{\mu} \frac{\mathrm{~h}_{\mu}}{\rho_{\mu}} \Omega^{2}+\left(1-\frac{\mu \rho_{\mu}}{3 \mathrm{~h}_{\mu}}\right)=0
$$

Valid only over a narrow vicinity of the cut-off frequency!

Numerical illustration

Asymptotic formulae for displacements and stresses (setup A)

Leading order displacements and stresses

$$
\begin{aligned}
\mathrm{u}_{\mathrm{c}} & =\mathrm{h}_{\mathrm{c}} \xi_{2 \mathrm{c}}, \\
\sigma_{13}^{\mathrm{c}} & =\mathrm{i} \mu_{\mathrm{c}} \sqrt{\mu} \mathrm{~K}_{*} \xi_{2 \mathrm{c}}, \\
\sigma_{23}^{\mathrm{c}} & =\mu_{\mathrm{c}},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{u}_{\mathrm{s}} & =\mathrm{h}_{\mathrm{c}} \\
\sigma_{13}^{\mathrm{s}} & =\mathrm{i} \mu_{\mathrm{s}} \sqrt{\mu} \mathrm{~K}_{*}, \\
\sigma_{23}^{\mathrm{s}} & =\mu_{\mathrm{c}} \mathrm{~h}\left(\mathrm{~K}_{*}^{2}-\frac{\Omega_{*}^{2}}{\rho_{\mu}}\right)\left(\xi_{2 \mathrm{~s}}-1\right) .
\end{aligned}
$$

We obtain

$$
\frac{\mathrm{u}_{\mathrm{q}}}{\mathrm{~h}_{\mathrm{c}}} \sim \frac{\sigma_{23}^{\mathrm{q}}}{\mu_{\mathrm{c}}} \sim \frac{\sigma_{13}^{\mathrm{q}}}{\mu_{\mathrm{q}} \sqrt{\mu}}, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s} .
$$

Normalised displacement and stress $\sigma_{23}($ setup A)

$$
\begin{aligned}
& \xi_{2}=\xi_{2 \mathrm{c}}, \mathrm{u}=\frac{\mathrm{u}_{\mathrm{c}}}{\mathrm{~h}_{\mathrm{c}}}, \text { and } \sigma_{23}=\frac{\sigma_{23}^{\mathrm{c}}}{\mu_{\mathrm{c}}},\left(0<\xi_{2} \leq 1\right) \\
& \text { or } \xi_{2}=1+\xi_{2 \mathrm{~s}}, \mathrm{u}=\frac{\mathrm{u}_{\mathrm{s}}}{\mathrm{~h}_{\mathrm{c}}}, \text { and } \sigma_{23}=\frac{\sigma_{23}^{\mathrm{s}}}{\mu_{\mathrm{c}}},\left(1<\xi_{2} \leq 2\right)
\end{aligned}
$$

Model construction (setup A)

Scaled longitudinal coordinate and time

$$
\mathrm{x}_{1}=\frac{\mathrm{h}_{\mathrm{c}}}{\sqrt{\mu}} \xi_{1} \quad \text { and } \quad \mathrm{t}=\frac{\mathrm{h}_{\mathrm{c}}}{\mathrm{c}_{2 \mathrm{c}} \sqrt{\mu}} \tau
$$

Normalised displacement and stresses

$$
\mathrm{u}^{\mathrm{q}}=\mathrm{h}_{\mathrm{c}} \mathrm{v}^{\mathrm{q}}, \quad \sigma_{13}^{\mathrm{q}}=\mu_{\mathrm{q}} \sqrt{\mu} \mathrm{~S}_{13}^{\mathrm{q}}, \quad \sigma_{23}^{\mathrm{q}}=\mu_{\mathrm{c}} \mathrm{~S}_{23}^{\mathrm{q}}, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s} .
$$

with all dimensionless quantities assumed to be of order unity.

Core layer

$$
\begin{array}{r}
\mu \frac{\partial \mathrm{S}_{13}^{\mathrm{c}}}{\partial \xi_{1}}+\frac{\partial \mathrm{S}_{23}^{\mathrm{c}}}{\partial \xi_{2 \mathrm{c}}}-\mu \frac{\partial^{2} \mathrm{v}^{\mathrm{c}}}{\partial \tau^{2}}=0 \\
\mathrm{~S}_{13}^{\mathrm{c}}=\frac{\partial \mathrm{v}^{\mathrm{c}}}{\partial \xi_{1}}, \quad \mathrm{~S}_{23}^{\mathrm{c}}=\frac{\partial \mathrm{v}^{\mathrm{c}}}{\partial \xi_{2 \mathrm{c}}}
\end{array}
$$

Skin layer

$$
\begin{gathered}
\frac{\partial \mathrm{S}_{13}^{\mathrm{s}}}{\partial \xi_{1}}+\frac{1}{\mathrm{~h}} \frac{\partial \mathrm{~S}_{23}^{\mathrm{s}}}{\partial \xi_{2 \mathrm{~s}}}-\frac{1}{\rho_{\mu}} \frac{\partial^{2} \mathrm{v}^{\mathrm{s}}}{\partial \tau^{2}}=0 \\
\mathrm{~S}_{13}^{\mathrm{s}}=\frac{\partial \mathrm{v}^{\mathrm{s}}}{\partial \xi_{1}}, \quad \mu \mathrm{hS}_{23}^{\mathrm{s}}=\frac{\partial \mathrm{v}^{\mathrm{s}}}{\partial \xi_{2 \mathrm{~s}}}
\end{gathered}
$$

Derivation of a shortened equation (setup A)

Continuity and boundary conditions

$$
\begin{aligned}
\left.\mathrm{v}^{\mathrm{c}}\right|_{\xi_{2 \mathrm{c}}=1} & =\left.\mathrm{v}^{\mathrm{s}}\right|_{\xi_{2 \mathrm{~s}}=0}, \\
\left.\mathrm{~S}_{23}^{\mathrm{c}}\right|_{\xi_{2 \mathrm{c}}=1} & =\left.\mathrm{S}_{23}^{\mathrm{s}}\right|_{\xi_{2 \mathrm{~s}}=0},
\end{aligned}
$$

and

$$
\left.\mathrm{S}_{23}^{\mathrm{S}}\right|_{\xi_{2 \mathrm{~s}}=1}=0
$$

Expand displacements and stresses into asymptotic series as

$$
\begin{aligned}
\mathrm{v}^{\mathrm{q}} & =\mathrm{v}_{0}^{\mathrm{q}}+\mu \mathrm{v}_{1}^{\mathrm{q}}+\cdots, \\
\mathrm{S}_{\mathrm{j} 3}^{\mathrm{q}} & =S_{j 3,0}^{\mathrm{q}}+\mu S_{j 3,1}^{\mathrm{q}}+\cdots, \quad \mathrm{q}=\mathrm{c}, \mathrm{~s} \quad \text { and } \quad j=1,2 .
\end{aligned}
$$

Leading order problem

$$
\mathrm{S}_{13,0}^{\mathrm{c}}=\frac{\partial \mathrm{v}_{0}^{\mathrm{c}}}{\partial \xi_{1}}, \quad \frac{\partial \mathrm{~S}_{23,0}^{\mathrm{c}}}{\partial \xi_{2 \mathrm{c}}}=0, \quad \mathrm{~S}_{23,0}^{\mathrm{c}}=\frac{\partial \mathrm{v}_{0}^{\mathrm{c}}}{\partial \xi_{2 \mathrm{c}}}
$$

and

$$
\begin{gathered}
\frac{\partial \mathrm{S}_{13,0}^{\mathrm{s}}}{\partial \xi_{1}}+\frac{1}{\mathrm{~h}} \frac{\partial \mathrm{~S}_{23,0}^{\mathrm{s}}}{\partial \xi_{2 \mathrm{~s}}}-\frac{1}{\rho_{\mu}} \frac{\partial^{2} \mathrm{v}_{0}^{\mathrm{s}}}{\partial \tau^{2}}=0 \\
\mathrm{~S}_{13,0}^{\mathrm{s}}=\frac{\partial \mathrm{v}_{0}^{\mathrm{s}}}{\partial \xi_{1}}, \quad \frac{\partial \mathrm{v}_{0}^{\mathrm{s}}}{\partial \xi_{2 \mathrm{~s}}}=0
\end{gathered}
$$

with

$$
\begin{aligned}
\left.\mathrm{v}_{0}^{\mathrm{c}}\right|_{\xi_{2 \mathrm{c}}=1} & =\left.\mathrm{v}_{0}^{\mathrm{s}}\right|_{\xi_{2 \mathrm{~s}}=0}, \\
\left.\mathrm{~S}_{23,0}^{\mathrm{c}}\right|_{\xi_{2 \mathrm{c}}=1} & =\left.\mathrm{S}_{23,0}^{\mathrm{s}}\right|_{\xi_{2 \mathrm{~s}}=0},
\end{aligned}
$$

and

$$
\left.\mathrm{S}_{23}^{\mathrm{S}}\right|_{\xi_{2 \mathrm{~s}}=1}=0
$$

Leading order solution

$$
\mathrm{v}_{0}^{\mathrm{s}}=\mathrm{w}\left(\xi_{1}, \tau\right)
$$

The rest of the quantities are expressed in terms of w as

$$
\begin{aligned}
& \mathrm{S}_{13,0}^{\mathrm{c}}=\xi_{2 \mathrm{c}} \frac{\partial \mathrm{w}}{\partial \xi_{1}}, \quad \mathrm{~S}_{23,0}^{\mathrm{c}}=\mathrm{w}, \quad \mathrm{v}_{0}^{\mathrm{c}}=\xi_{2 \mathrm{c}} \mathrm{w} \\
& \mathrm{~S}_{13,0}^{\mathrm{S}}=\frac{\partial \mathrm{w}}{\partial \xi_{1}}, \quad \mathrm{~S}_{23,0}^{\mathrm{s}}=\mathrm{w}\left(1-\xi_{2 \mathrm{~s}}\right)
\end{aligned}
$$

with w satisfying the 1D equation

$$
\frac{\partial^{2} \mathrm{w}}{\partial \xi_{1}^{2}}-\frac{1}{\rho_{\mu}} \frac{\partial^{2} \mathrm{w}}{\partial \tau^{2}}-\frac{1}{\mathrm{~h}} \mathrm{w}=0
$$

which may be presented in the original variables as

$$
\frac{\partial^{2} \mathrm{u}_{\mathrm{s}}}{\partial \mathrm{x}_{1}^{2}}-\frac{\rho_{\mathrm{s}}}{\mu_{\mathrm{s}}} \frac{\partial^{2} \mathrm{u}_{\mathrm{s}}}{\partial \mathrm{t}^{2}}-\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{s}} \mathrm{~h}_{\mathrm{c}} \mathrm{~h}_{\mathrm{s}}} \mathrm{u}_{\mathrm{s}}=0
$$

where $\mathrm{u}_{\mathrm{s}}\left(\mathrm{x}_{1}, \mathrm{t}\right) \approx \mathrm{w}\left(\mathrm{x}_{1}, \mathrm{t}\right)$.

Justification of the model

Insert ansatz $u_{s}=\exp \left\{i\left(\mathrm{kx}_{1}-\omega \mathrm{t}\right)\right\}$ into the last equation. As a result, we have the dispersion relation

$$
\mathrm{k}^{2}-\frac{\rho_{\mathrm{s}}}{\mu_{\mathrm{s}}} \omega^{2}+\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{s}} \mathrm{~h}_{\mathrm{c}} \mathrm{~h}_{\mathrm{s}}}=0
$$

Coincides with the shortened dispersion relation for setup A!

Contents

In-plane vector problem

Anti-plane scalar problem

Anti-plane scalar problem for asymmetric plates

Anti-plane shear of three-layered asymmetric plates

More sophisticated dispersion relation

$\mu \alpha_{1} \alpha_{2} \tanh \left(\mathrm{~h} \alpha_{1}\right)+\mu^{2} \alpha_{2}^{2} \tanh \left(\alpha_{2}\right)+$

$$
\mu \alpha_{1} \alpha_{2} \tanh \left(\mathrm{~h}^{*} \alpha_{1}\right)+\alpha_{1}^{2} \tanh \left(\mathrm{~h}^{*} \alpha_{1}\right) \tanh \left(\alpha_{2}\right) \tanh \left(\mathrm{h} \alpha_{1}\right)=0,
$$

where

$$
\alpha_{1}=\sqrt{\mathrm{K}^{2}-\frac{\mu}{\rho} \Omega^{2}}, \quad \alpha_{2}=\sqrt{\mathrm{K}^{2}-\Omega^{2}}
$$

with

$$
\Omega=\frac{\omega \mathrm{h}_{2}}{\mathrm{c}_{2}^{(2)}}, \quad \mathrm{K}=\mathrm{kh}_{2}
$$

and

$$
\mathrm{h}=\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}, \quad \mathrm{~h}^{*}=\frac{\mathrm{h}_{3}}{\mathrm{~h}_{2}}, \quad \mu=\frac{\mu_{2}}{\mu_{1}}, \quad \rho=\frac{\rho_{2}}{\rho_{1}}, \quad \mathrm{c}_{2}^{(\mathrm{i})}=\sqrt{\frac{\mu_{\mathrm{i}}}{\rho_{\mathrm{i}}}}, \quad \mathrm{i}=1,2
$$

Effect of contrast

No contrast

Contrast parameters

Two modes in case of high contrast for a scalar problem!

Cut-off frequencies

Frequency equation

$$
\begin{aligned}
& \sqrt{\mu \rho}\left(\tan \left(\mathrm{h} \sqrt{\frac{\mu}{\rho} \Omega}\right)+\tan \left(\mathrm{h}^{*} \sqrt{\frac{\mu}{\rho} \Omega}\right)\right) \\
& \quad+\mu \rho \tan (\Omega)-\tan \left(\mathrm{h} \sqrt{\frac{\mu}{\rho} \Omega}\right) \tan (\Omega) \tan \left(\mathrm{h}^{*} \sqrt{\frac{\mu}{\rho} \Omega}\right)=0
\end{aligned}
$$

Lowest cut-off

$$
\Omega \approx \sqrt{\frac{\mu \rho\left(\mathrm{h}+\mathrm{h}^{*}+\rho\right)}{\mathrm{hh}^{*} \mu}}
$$

A. Photovoltaic panels. Two-mode approximation

Shortened polynomial dispersion relation for two modes

$$
\mathrm{G}_{1} \mathrm{~K}^{2}+\mathrm{G}_{2} \Omega^{2}+\mathrm{G}_{3} \mathrm{~K}^{4}+\mathrm{G}_{4} \mathrm{~K}^{2} \Omega^{2}+\mathrm{G}_{5} \Omega^{4}+\mathrm{G}_{6} \mathrm{~K}^{4} \Omega^{2}++\mathrm{G}_{7} \mathrm{~K}^{2} \Omega^{4}=0
$$

Concluding remarks

- Multi-parametric analysis is performed
- One- and two-mode approximations (both asymptotically uniform and composite) are constructed
- 1D shortened PDEs are derived for several setups.

