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High-contrast layered structures

e Photovoltaic panels (jc/ps ~ 1072 — 1079)

.- junction box
.- back sheet or glass
- encapsulant

- electrical conductor
crystalline solar cells
== encapsulant
= front glass
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High-contrast layered structures

e Photovoltaic panels (jc/ps ~ 1072 — 1079)

.- junction box
.- back sheet or glass
- encapsulant

- electrical conductor
crystalline solar cells
== encapsulant
= front glass

Glass pane
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Sandwich structures

o Classical sandwich plate

Face skin (blue)

A

\ ‘ Core

Face skin (blue)

Facing

Facing

Core



Preliminary remarks
Consider bending of homogeneous isotropic plate of width 2h

Rayleigh-Lamb dispersion equation

4Sinh a
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cosh 3 — 32K? cosh o 0, where
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Long wave approximations (K < 1)

O Low-frequency (2 < 1)

At the leading order Q ~ K2 or

diw

Q2w =0 =
et w=0 &=y
Kirchhoff equation = leading order approximation

D, X

O High-frequency approximations near cut-off frequencies Q, ~ 1

(19-9Q,<1)
At the leading order K ~ |Q? — Qzﬁ
d?w 2 2
Pa@ + (Q — Q*)W =0

No overlap frequency regions =

No chance for 2-mode uniform approximations!

J. Kaplunov et al, Dynamics of thin walled elastic bodies, 1998 6/52



Composite (non-uniformly asymptotic) plate theories

Originate from Timoshenko-Reissner-Mindlin ad hoc theories.

low-frequency

diw EALY
D,—— — Q®°W + B, Q0% ——— + C,Q*W =0
det + de? + ’

Ba, Ca, Dy - constants

V.L. Berdichevsky. Variational principles of continuum mechanics: I.
Fundamentals, 2009

K.C. Le. Vibrations of shells and rods, 2012

1.V. Andrianov et al,Asymptotical mechanics of thin-walled
structures, 2013
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In-plane vibrations of three-layered plates

Statement of the problem

Equations of motion
q _ ..q _ .
O = Pqly, d=¢s for core and skin layers
Boundary and continuity conditions

052207 USQZO at x2 = he + hg

c __ S c __ S c __ S c __ S .
019 = 019, 099 = 099 and u; = uq, Uy = Uy at X9 =

he
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Dispersion relation for antisymmetric motion

4K h3 a9 B8oF 4 [F1FaCp, Say — 201 81 (1 — 1)F3C4, S5,]
+ haoBsCa, Cp, [4a1 1K (W*F3 + Fo?(pu — 1)%) Ca, S,
— (4K*h'F3 + F4°F}) Sa, Cp, |

+ Cﬂ2Sa2M62(B% - KZhZ)(ﬁ% - KZ) [4a%51K2h28a1851 - F42alcalcﬁl
+ Ca,Sp, aa(B5 — K*h?) (87 — K?) [4a1 B3K*h?Cy, C, — Fa?B1Sa, Sp,
+h’S0,S5, [(40385K°F] + K*F4*F3) Cg,Sa,

—a1 1 (1603583 (1 — 1)°K* + F4?F3) Ca, S, ] =0
Non-dimensional scaled frequency and wave number

whe¢
="
2

K = kh,

Fiy, i=1.4, o, B, j=1,2 - functions of Q and K,
Ca;, Cp;ySa;, 58, - hyperbolic functions

P. C. Y. Lee et al, Journal of Elasticity, 1979. 10 / 5¢



Dispersion curves

No contrast

0.5
K
0 1.18 3.66 4.47 6.28
Q
Effect of contrast
0.5
K
017 3.13 4.7 6.29
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1D eigenvalue problem for shear cut-off (antisymmetric motion)

Setting duj/dx; = uj = 0 in the
above problem we have (u] = uj(x2))

g\\\\\\\\ﬁ

Equations of motion

d*uf  w?
dx2 +7qu1:0’ q=a5,
2 2

subject to the boundary and continuity conditions

d S
B0 at xo = +(he + hy),
dxo

du§ duj
Mcdx;_ﬂsdx;’ uj =u] at xp = th..




Cut-off shear frequencies

Equation for cut-off shear frequencies:

tan(Q) tan <\/gh Q) =./pp

Condition for a first shear cut-off frequency to be small

1/2
p<h< ™, Qz(%) ,

where

M:&a P:&a hz&

Hs Ps he

J. Kaplunov et al, Journal of Sound and Vibration,2016.
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Practical examples (p < h < u™')

A. Photovoltaic panels TSISISISISIEIEIEIEIEIE
p<LLh~1p~p

stiff skin layers and light core layer SRRRRRRRRRRRL

o S

p<Lhep 2 p oy

stiff skin layers and light thin core layer _

C. Sandwich structures

p<Lheo pp
stiff thin skin layers and light core layer

Unusually low first shear cut-off frequencies!
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Long-wave low-frequency asymptotic approximation

For K< 1land 2«1

712 4 1K + 13K20% + KOS + Q% + 6KAQ? + 47 K8+
78K294 —+ ’}/ng96 =+ ’71096 +..=0

Multi-parametric analysis
p<l, h~p® peopP

Expanding coefficients

Yi — Gi/,LC, Gi ~1



A. Photovoltaic panels

Plate with stiff outer layers and light core

p< 1,

h~1, p~p

Retain leading order terms for both modes:

1. fundamental mode (Q ~ K?)

1

2. shear mode with cut-off Qg, ~ /1

4~ 001, h=10, p=003

Five term two-mode
approximation

(}1u§22‘+'(}2u1<4
+-(}31(2S22 %—(}41(6 %—(}5§24 =0
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Local approximations

Three local approximations can be obtained from the two-mode

approximation
1
K
/
045 F==-=-- -
I/ g \\\ I//
NEVERN

pn~001, h=10, p=003

o



Local approximations for the fundamental mode
In the vicinity of zero frequency

G+ GK' =0, 0<K< i, Q<upu
At higher frequencies, including the vicinity of shear cut-off
Qo ~ V1
G +GK =0, yp<K<l, p<Qxl1

1

p=~0.01, h=10, p=0.03

Kirchhoff theory already does not work at Q ~ p!



Uniform approximation for the fundamental mode

Taking both local approximations we derive a uniform one:

G + GopK?t 4+ G3K?Q? + G4Kb =0

1

1n~001, h=1.0, p=0.03

.
0 0.17
Q

Also valid in the transition region Q ~ pu, K ~ /it
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Near cut-off approximation

For Q ~ /i, K < 1

Gip+ G3K2 + G592 =0

4~ 001, h=1.0

, p=0.03

L
0 017 1 2
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Displacement u; near shear cut-off frequency

Horizontal displacement u; and approximation for p ~ 0.01 in
shear mode (K = 0)

06

At the leading order
9 _
04| ] uy = m, f0r§—01
| ﬁ, foréE =1..14+h
] where
01 4 . E
1001, h=10, p=003 E B hC

0 1 2



Displacement u; near shear cut-off frequency

Displacement u; and approximation for p ~ 0.01 on
fundamental mode (at K = 0.45)

0.004

0.002

-0.002

-0.004

‘ 1~ 001, h=10, p=003
1 2

N
N
~
o
¥



B. Laminated glass. Two-mode approximation

Qun ~ p'/? leads to the two-mode uniform approximation
Gip*Q% + Gop® K + Gap®PKPQ% + GuK® + G5p”Q* = 0,

0.3

p=0.001, h =10.0, p = 0.01
0 0.03 0.5




C. Sandwich structure. Two-mode approximation

Plate with stiff outer layers and light core
p<l, he~p, pep?

Local approximation:

fundamental mode (Q < /i) and shear

1

Al

b e e e e e e e e e e e e mm Y

;2 0.01, h~ 001, p=0.0002

0 0.134

Composite non-uniform approximations!

mode (Qq ~ (/1t)

Two-mode
approximation

G1uQ? + Gop®K*
+ uK2Q? <G3 n fl“G8>

m
—|—G5Q4 =0

V]

o
¥



Transition from a uniform to non-uniform approximation

Where is transition from uniform approximation to a composite
(non-uniform) one?

p=Lrr, p=teo, h=—~pa, O0<a<l

Ps s he

Small thickness shear cut-off frequency

Qg & (%)1/2 ~ pm2 <



Transition from a uniform to non-uniform approximation

Uniform Transitional case Non-uniform

q
1

a=1/9 a=1/3 a=2/3

g = m 1 i o2 Y s 1 o oz g =

@ Uniform 0 <a <1/3
1
pl_aGlQ2 + pl_aG2K4 + G3I<2Q2 + §p2aG2K6 + G5Q4 =0.
e Non-uniform 1/3 <a <1

PP 2GIQ% + p T 2GoKt + G3K2Q2 + G5t = 0.
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In progress: 2D PDEs for strongly inhomogeneous plates

Uniformly asymptotic
BRRRIRIRIIRIRIXL
ERRRIIRIIRIRIIXS
Gipg + GopA?u + GzAug + GaA3u + Gaugy = 0

Composite

Gypugg + Gop?A%u + GapAugy, + Gsugey + GgAuyggy, = 0

Not easy to justify!
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Anti-plane antisymmetric motion

T2

he + hs
skin layer
————————————————————————————— he
core layer
T
Equations of motion
q 2
doyy  Oogs 8uq_0 q=c.s
0x1 Oxa 4 ot2 ’ T
with 9
u,
q _ a s
Ui3 = qg, 1= ]., 2,
i




Dispersion relation
Continuity conditions along interfaces xo = +h,
053 = 053 and U = Us.
Traction-free boundary conditions
053 =0 at xg = *(h + hy).
Equations of motion

1 0%u
Aug — a5 ——t =0, =g,s.
o
Dispersion relation

pevy cosh(ary) cosh(agh) + ag sinh(a) sinh(agh) = 0,

with
o] =V K2 — Qz, Qo = K2 — HQQ,
\/ p
h h
Q=" K=kh, h= =, p=He =P
C2 C ,LLS pS
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Exact solutions for displacements and stresses

Uc = th7 ol3 = iMcKMa 093 = pic cosh(a1&ac),
a1 a1
and
us = hef3 (cosh [aa(h&as + 1)] — tanh [aa(h + 1)] sinh [ag(héas + 1)]),
013 = ipus KB (cosh [aa(héas + 1)] — tanh [ag(h + 1)] sinh [z (hé2s + 1)]) ,

055 = psaaf (sinh [ag(hées + 1)] — tanh [aa(h + 1)] cosh [aa(héas + 1)]),

where )
sinh oy

- o (cosh ag — sinh g tanh[ap (h + 1)])

Dimensionless variables

£2C:E7 0 <x9 < he,
he
X9 —hc
ng: L > he <x9 < h + hs.
s



Long-wave low-frequency limit

Polynomial dispersion relation

g4 K2 + oK+ 43K2Q2 + Q2 + Q0 4+ =0,
with

"= g(1+h2)+h
H

Y=g (1 +6h% +h?) + E(1 +h?),
732—%(1+3h2) g 1“2};(2+3 h)—‘l‘;‘?’(4+uh)
74__;21_;?(1#;11)7

o= e B ) + B

o
¥



Dispersion curves

No contrast Effect of contrast
KO0.5- | KO0.5-
1.18 3.63 6.16 0.17 3.13 4.60 6.29
Q Q
uw=0.232, p=3.0,h=1.0 n=0.014, p =0.03, h =1.0

o No fundamental mode. It appears in case of symmetric
motion.

@ The lowest cut-off frequency in case of a contrast is
Q=0.17

Consider two setups of the contrast:
A. Photovoltaic panels and B. Sandwich structures



A. Photovoltaic panels. Shortened polynomial dispersion relation
Plate with stiff outer layers and light core LTSS
p<l, h~1, pr~p IRRESRRRERE:

Shortened dispersion relation
1
Y o -}
h Pu

Scaled dimensionless frequency and wavenumber
02 = p2Q? and K2 = p°K2,
where Q, ~ K, ~1and 0 < a < 1.

a covers the whole long-wave low-frequency band, given by
Q<1 and K< 1.
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Shortened polynomial dispersion relation
Dispersion relation expressed in €, and K, becomes

l—a
szpu <K§+'uh )

At oo < 1 we have Q, ~ /p, K, or w ~ c3k, corresponding to the
short-wave limit for stiffer skin layers.

1.




B. Sandwich structure. Shortened polynomial dispersion relation

Plate with stiff outer layers and light core
pL 1, h ~ my, p~ /’L2

M~y e~ and g3~y e~ s~ L

Approximate dispersion relation

M+u(;+hu> KZ—GIZLKQQZ— <g+};’;> QZ+(§1P’LQ4:O.
Normalized wavenumber and frequency
K?=puK? and Q2 = puQ?,
we obtain
1+ u <; +hu> KE—MG}ZK?Qi— <’2‘ + EZ) Qz+u§;;Qf: =0.
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Shortened polynomial dispersion relation

Adapt a near cut-off asymptotic expansion in the form
Q2 = Q3+ Q2+ -

where

2
02 =Pr nq Q2="Pu l—l—h KQ_E@
07 h, h, \3 " %) 3h2

leading to the optimal shortened dispersion relation

1 1h
(h#+>K2—“§22+ (1—“”“) = 0.
3 iy 3h,,

Valid only over a narrow vicinity of the cut-off frequency!



Numerical illustration

1.0

Q

pw=0.014, p = 0.03, and h = 1.0

o
¥



Asymptotic formulae for displacements and stresses (setup A)

Leading order displacements and stresses

Uc = hc£20)
0-53 = i:U’C\/IEK*SQCa
0-53 = MC?
and
Us = hc;
o3 = ipsy/uKsy,
2 Q2
053 = ch (K* — *> (€25 — 1).
Pu
We obtain

q q
Ug T23 %13

he He Har/B ’

q=nc,s.
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Normalised displacement and stress ooz (setup A)

u oS
52=€2c,u=f, and 093 = —22, (0 < & < 1)
C C

S

0r§2=1+§257u=%,&nd023=@7(1<§2§2)

C C

1 . 1
1.0 1.0 S
0.5 0.5

0.5 1.0 i5 0.5 1.0 i5

§2 &2

)
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Model construction (setup A)

Scaled longitudinal coordinate and time

he
T7
C2¢ \/ﬁ

h,
X1 = 751 and t=

Normalised displacement and stresses

_ q __ q q __ q _
u =hev?,  oyy = pqV/KSi3, 093 = [eSy3, 4 =Cs.

with all dimensionless quantities assumed to be of order unity.

Core layer Skin layer
M@S‘ig n 0855 M82VC _0, OSiz | 1053 i82v25 o,
651 8526 67’2 851 h 8525 pu 87-

c OV ov° ov® s ov®

— q¢ = a5 - ] = A h = .
BTog VP O BT o TR ag,

11 /52



Derivation of a shortened equation (setup A)

Continuity and boundary conditions

v }§2c_1 ’52 =0’
23}52;1 - 23’525:0’

and

33‘52521 =0.

Expand displacements and stresses into asymptotic series as

Vq:V8+/~N?+"'v
S%—S?:.)O—I—MSJM -+, gq=¢s and j=1,2



Leading order problem

¢y, = AGTNC T SSy = Mg
307067 g ’ 307 9y
and
OSi30 , 105330 1 Pvg _ 0
961 h 0&s  py 072 ’
ov3 ove
SSa g = =2, 0 —0,
BOT08 by
with
VC — S ,
0 62021 0 §2520
C — S
28.0[, _y V20|, o7
and
33 £as=1 =0.




Leading order solution

VS = W(fh T)'

The rest of the quantities are expressed in terms of w as

520 é. (2:3’(] =W, V(C) = §2CW7
ow
Siz0 = o8, 93,0 = W(1 — &as),

with w satisfying the 1D equation
Pw 19w 1
875% pp OT? h
which may be presented in the original variables as

9%ug B &GQus M —0,
ox?  ps 02 pshe h

where ug(x1,t) ~ w(x1,t).



Justification of the model

Insert ansatz us = exp {i(kx; — wt)} into the last equation. As a
result, we have the dispersion relation

Ps 2 He
K — 2?4 =0.
Hs ﬂshchs

Coincides with the shortened dispersion relation for setup Al
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Anti-plane shear of three-layered asymmetric plates

X2

—hy

X1



More sophisticated dispersion relation

pagag tanh(hay) + plon? tanh(ag)+

paias tanh(h*a;) + a;? tanh(h*a; ) tanh(as) tanh(hay ) = 0,

where
ap = JK2-EQ2 ay = VKZ-Q2
P
with
Qo gy,
@
2
and
h h i :
h=t pr=28 ,=r -2 0O_ A 19

h27 _hQ, /’L_M17 _p17 2 pi7 9



Effect of contrast

No contrast Contrast parameters
1.0 1.0F
08 08l
06 06k
04 04l
02r 02}
00 - - 007\ L L L L L
0.0 0.2 04 0.6 0.8 1.0 12 14 0.0 0.2 04 0.6 0.8 1.0
Q Q

Two modes in case of high contrast for a scalar problem!
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Cut-off frequencies

Frequency equation
ip (tan (h\/ﬁﬂ> + tan <h*\/ﬁQ>>
P P
+ pptan () — tan (h\/ﬁﬂ> tan (Q2) tan <h*
0

Lowest cut-off

O~ o0 p)
hh*u

a) ~o.



A. Photovoltaic panels. Two-mode approximation

Shortened polynomial dispersion relation for two modes

G1K24+ G2+ G KA+ G KPP+ G50 + G KA Q2 ++G/K2Q = 0

----- Appr Dispersion Relation

0.4 —— Exact Dispersion Relation
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Concluding remarks

o Multi-parametric analysis is performed

@ One- and two-mode approximations (both asymptotically
uniform and composite) are constructed

@ 1D shortened PDEs are derived for several setups.
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