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Figure: Kumarijit Saha, Anish Sarkar & Chi Tran.
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e The Brownian Web as a universal scaling limit
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The Directed Spanning Forest ¥ (DSF)

Vertex set: a homogeneous PPP A in R2. )
e = (0, 1): a deterministic direction.
Local rule: each x € N is linked

to the closest vertex — o
in{zeR?:(z, X+ &) > 0}.

= The Directed Spanning Forest .

@ Approximation (local and in distribution) of the Radial Spanning Tree
studied by Baccelli & Bordenave ('08) to modelize communication
networks.

@ The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
@ But long-range dependence...
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Dependence phenomenons

(@) (b)

Figure: (a) Dependence phenomenon within a single path: how the past trajectory
may influence its next steps. (b) Dependence phenomenon between two DSF
trajectories: the overlap locally acts as a repulsive effect.
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Coalescence

Theorem (C. & Tran '12)

(1) A.s. all the DSF paths eventually coalesce.
(2) A.s. there is no bi-infinite path in the DSF F .
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Scaling limit: our main result

@ For X := (X(1),X(2)) e N, let 7% : [X(2), ) — R be the linear
interpolation of the DSF trajectory starting at X.

@ Diffusive scaling: Forn> 1,0,y >0and X e N, let

(@) = ¥y )

and
Xn(oyy) = {ﬂ)n((()',)/); Xe N} .
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Scaling limit: our main result

@ For X := (X(1),X(2)) e N, let 7% : [X(2), ) — R be the linear
interpolation of the DSF trajectory starting at X.

@ Diffusive scaling: Forn> 1,0,y >0and X e N, let

(@) = ¥y )

and
Xn(oyy) = {ﬂ)n((()',)/); Xe N} .

Theorem (C., Saha, Sarkar & Tran '18)

There exist o,y > 0 such that the sequence {X(c,y),n > 1} converges in
distribution to the (standard) Brownian Web ‘W as n — co.
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e The Brownian Web as a universal scaling limit
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Existence of the BW W

Let M := Uyer Clto] X {0} equipped with the distance:

(1), 1)) = [sup o (0.) = O(E(D. 0] v (1) - W(e)

tanh(x)

with ®(x,t) := e

and W(t) :=tanh(t) .
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Let M := Uyer Clto] X {0} equipped with the distance:

(1), 1)) = [sup o (0.) = O(E(D. 0] v (1) - W(e)

tanh(x)
141t
Let H be the space of compact subsets of (I, d), equipped with the
Hausdorff metric.

with ®(x,t) :=

and W(t) :=tanh(t) .

Theorem (Fontes, Isopi, Newman & Ravishankar '04)
9 a H-valued r.v. ‘W whose distribution is uniquely determined by:

(i) for any x € R?, there is a.s. a unique path 7* € ‘W starting from X,

(i) for any finite set {x1, ..., X} of points, the collection (7*1, ..., n%) is
distributed as coalescing BMs starting from (X1, ..., Xk),

(iii) for any countable deterministic dense subset D c R?, ‘W a.s. is the
closure of {7* : x € D} in (1, d).
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Convergence criteria

i'()—‘y-fX ? /
Fora,b,lye R, t >0, R

nx(to, t; &, b) := #{n(to+1) : me X, x(to) € [a, b]}.

fo
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Convergence criteria

o+t k| /

Fora,b,lye R, t >0, R
nx(to, t; &, b) := #{n(to+1) : me X, x(to) € [a, b]}.
fo

a b
Theorem (Fontes, Isopi, Newman & Ravishankar '04)

A sequence {X, : n > 1} of H—valued r.v.'s with noncrossing paths
converges to the BW if:

(I) For any countable dense set D c R?: for any x € D, there exists
X € X, s.t. for any finite subset {x',...,xk} c D, (x%',...,7%") converges
in distribution to coalescing BMs started from X, ..., X.

(B1) Vt > 0, limy_e SUP(a,1)er? P(nx,(fo, ;8,8 +€) 22) > 0ase | 0.

(B2) Yt > 0, Llimn_,c SUP (4 1,)cr2 P(nx,(fo. ;8,8 + €) > 8) > O ase | 0.
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The coalescing random walks model

Z%ven = {(X’ t) e Z% x +tis even}.
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The coalescing random walks model

Z%ven = {(X’ t) e Z% x +tis even}.

Each vertex of Z3,,, goes to NE or NW,
each with probability % and independently.

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

Under a diffusive scaling, this directed forest converges to the BW.
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The 2—dimensional Poisson Tree

Vertex set: a homogeneous PPP N.
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The 2—dimensional Poisson Tree

Vertex set: a homogeneous PPP N.
e> = (0, 1): a deterministic direction.
r > 0: a deterministic parameter.

Local rule: each u € N is linked |
to the vertex inside the rectangle ° ro
{(x(1),x(2)) e R2: [x(1) —u(1)| < r, x(2) > u(2)} .
having the smallest ordinate.
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The 2—dimensional Poisson Tree

Vertex set: a homogeneous PPP N.
e> = (0, 1): a deterministic direction.
r > 0: a deterministic parameter.

Local rule: each u € N is linked

to the vertex inside the rectangle

{(x(1),x(2)) e R2: [x(1) —u(1)| < r, x(2) > u(2)}
having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Under a diffusive scaling, this directed forest converges to the BW.
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A discrete and L' DSF
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A discrete and L' DSF

V: site percolation on Z? with
parameter 0 < p < 1.
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A discrete and L' DSF

i i o o 0o
V' site percolation on Z= with 5 o0
parameter 0 < p < 1. o o

Local rule: Each u € V is linked © %
to the closest v € V in L'-sense g o g
and with v(2) > u(2). o o 6
In case of a tie, uniform choice. o 00

Theorem (Roy, Saha & Sarkar ’14)
Under a diffusive scaling, this directed forest converges to the BW.
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@ Some words about the proof
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The 3 key points

@ Schertzer et al '15: simplification of the convergence criteria for
non-crossing paths.

(B2) and FKG inequality = wedge condition.
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(B2) and FKG inequality = wedge condition.

@ A coalescence time estimate based on a new Laplace type argument.
If 7, is the coalescence time of DSF trajectories from (0, 0) and (0, ¢),

{
HC>0,VtZO,IP(Tg>t)SC—.
Vi

@ Accurate study of the evolution of DSF paths: breaking points.
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The joint exploration process
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The joint exploration process

3 DSF paths starting from x, y, z.

(90(x), 9o(¥), 9o(2)) = (x,y,2) and Hy = 0.

Hp: History set and L(H,): height of H,.

David Coupier DSF to BW Random Graphs 2018 18/20



The joint exploration process

3 DSF paths starting from x, y, z.

(90(x), 9o(¥), 9o(2)) = (x,y,2) and Hy = 0.

Hp: History set and L(H,): height of H,.

David Coupier DSF to BW Random Graphs 2018 18/20



The joint exploration process

[ ]
[}
¢ [ ]
[} ° °
| |
X °
[}
[ ] | |
,,,,,,, ] U
y

3 DSF paths starting from x, y, z.

(90(x), 9o(¥), 9o(2)) = (x,y,2) and Hy = 0.

Hp: History set and L(H,): height of H,.

David Coupier DSF to BW Random Graphs 2018 18/20



The joint exploration process

°
°
¢ °
. ° °
[}
X °
\ :
L4 [}
,,,,,,, 1 U
y

3 DSF paths starting from x, y, z.
(91(x),91(y), g1(2)) and Ho = 0.
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3 DSF paths starting from x,y, z.

(91(x),91(y). 91(2z)) and H;.

Hp: History set and L(H,): height of H,.
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The joint exploration process

3 DSF paths starting from x,y, z.
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Hp: History set and L(H,): height of H,.
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The joint exploration process

3 DSF paths starting from x, y, z.
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Hp: History set and L(H,): height of H,.
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The joint exploration process

3 DSF paths starting from x,y, z.
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Hp: History set and L(H,): height of H,.
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The joint exploration process

3 DSF paths starting from x,y, z.

(95(x). g5(y). gs5(2)) and Hs.

Hp: History set and L(H,): height of H,.
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Breaking points for k paths

Let x > 6. The sequence of good steps (7))o is defined by

70 = 0,
{ Tjip = min{kn>7,-: n>1, L(Hky) <« and ... } for j > 0.
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Breaking points for k paths

Let x > 6. The sequence of good steps (7))o is defined by

70 =0,
{ Tjip = min{kn>T,-: n>1, L(Hky) <« and ... } for j > 0.

There exist ¢, C > 0 s.t. for any integers j,n > 0

IP(Tj+1 -7 2 nlﬁj) < Ce ™,

where F,: o-algebra generated by the first n steps.
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Breaking points for k = 2 paths

The good step 7;

(9+,(x), g+,(y)) and H;,
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Breaking points for k = 2 paths

The good step 7; is a perfect step if

(9+,(x), g+,(y)) and H;,

(x(9,y(9): restarting points of the ¢-th perfect step.

The sequence {(x(0, y())} 120 18 @ Markov chain.
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