
The Directed Spanning Forest

converges to the Brownian Web

D. Coupier (Valenciennes), C. Tran (Lille),
K. Saha (Bangalore, India) & A. Sarkar (New Delhi, India)

David Coupier DSF to BW Random Graphs 2018 1 / 20



Coauthors

Figure: Kumarjit Saha, Anish Sarkar & Chi Tran.

David Coupier DSF to BW Random Graphs 2018 2 / 20



Plan

1 The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

3 Some words about the proof

David Coupier DSF to BW Random Graphs 2018 3 / 20



Plan

1 The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

3 Some words about the proof

David Coupier DSF to BW Random Graphs 2018 4 / 20



The Directed Spanning Forest F (DSF)

x

Vertex set: a homogeneous PPP N in R2.

e2 = (0, 1): a deterministic direction.

Local rule: each x ∈ N is linked

to the closest vertex

in {z ∈ R2 : 〈z,X + e2〉 ≥ 0}.
⇒ The Directed Spanning Forest F .

Approximation (local and in distribution) of the Radial Spanning Tree

studied by Baccelli & Bordenave (’08) to modelize communication

networks.

The DSF admits beautiful conjectures: Coalescence? Scaling limit ?

But long-range dependence...
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A simulation of the DSF
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Dependence phenomenons

z

y

x x

y

(a) (b)

Figure: (a) Dependence phenomenon within a single path: how the past trajectory

may influence its next steps. (b) Dependence phenomenon between two DSF

trajectories: the overlap locally acts as a repulsive effect.
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Coalescence

Theorem (C. & Tran ’12)

(1) A.s. all the DSF paths eventually coalesce.

(2) A.s. there is no bi-infinite path in the DSF F .
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Scaling limit: our main result

For X := (X(1),X(2)) ∈ N , let πX : [X(2),∞)→ R be the linear

interpolation of the DSF trajectory starting at X .

Diffusive scaling: For n ≥ 1, σ, γ > 0 and X ∈ N , let

πX
n (σ, γ)(·) :=

1

nσ
πX(n2γ ·)

and

Xn(σ, γ) :=
{
πX

n (σ, γ); X ∈ N
}
.

Theorem (C., Saha, Sarkar & Tran ’18)

There exist σ, γ > 0 such that the sequence {Xn(σ, γ), n ≥ 1} converges in

distribution to the (standard) Brownian WebW as n →∞.

David Coupier DSF to BW Random Graphs 2018 9 / 20



Scaling limit: our main result

For X := (X(1),X(2)) ∈ N , let πX : [X(2),∞)→ R be the linear

interpolation of the DSF trajectory starting at X .

Diffusive scaling: For n ≥ 1, σ, γ > 0 and X ∈ N , let

πX
n (σ, γ)(·) :=

1

nσ
πX(n2γ ·)

and

Xn(σ, γ) :=
{
πX

n (σ, γ); X ∈ N
}
.

Theorem (C., Saha, Sarkar & Tran ’18)

There exist σ, γ > 0 such that the sequence {Xn(σ, γ), n ≥ 1} converges in

distribution to the (standard) Brownian WebW as n →∞.

David Coupier DSF to BW Random Graphs 2018 9 / 20



Plan

1 The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

3 Some words about the proof

David Coupier DSF to BW Random Graphs 2018 10 / 20



Existence of the BWW
Let Π :=

⋃
t0∈R C[t0] × {t0} equipped with the distance:

d((f1, t1), (f2, t2)) :=

(
sup

t

∣∣∣∣Φ(f̂1(t), t) − Φ(f̂2(t), t)
∣∣∣∣
)
∨ |Ψ(t1) −Ψ(t2)|

with Φ(x, t) :=
tanh(x)

1 + |t | and Ψ(t) := tanh(t) .

Let H be the space of compact subsets of (Π, d), equipped with the

Hausdorff metric.

Theorem (Fontes, Isopi, Newman & Ravishankar ’04)

∃ a H-valued r.v. W whose distribution is uniquely determined by:

(i) for any x ∈ R2, there is a.s. a unique path πx ∈ W starting from x,

(ii) for any finite set {x1, . . . , xk } of points, the collection (πx1 , . . . , πxk ) is

distributed as coalescing BMs starting from (x1, . . . , xk ),

(iii) for any countable deterministic dense subset D ⊂ R2,W a.s. is the

closure of {πx : x ∈ D} in (Π, d).
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Convergence criteria

t0

t0+t

a b

For a, b , t0 ∈ R, t > 0,

ηX(t0, t ; a, b) := #
{
π(t0+t) : π ∈ X, π(t0) ∈ [a, b]

}
.

Theorem (Fontes, Isopi, Newman & Ravishankar ’04)

A sequence {Xn : n ≥ 1} of H−valued r.v.’s with noncrossing paths

converges to the BW if:

(I) For any countable dense set D ⊂ R2: for any x ∈ D, there exists

πx
n ∈ Xn s.t. for any finite subset {x1, . . . , xk } ⊂ D, (πx

1

n , . . . , π
x

k

n ) converges

in distribution to coalescing BMs started from x1, . . . , xk .

(B1) ∀t > 0, limn→∞ sup(a,t0)∈R2 IP(ηXn
(t0, t ; a, a + ǫ) ≥ 2)→ 0 as ǫ ↓ 0.

(B2) ∀t > 0, 1
ǫ
limn→∞ sup(a,t0)∈R2 IP(ηXn

(t0, t ; a, a + ǫ) ≥ 3)→ 0 as ǫ ↓ 0.
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The coalescing random walks model

Z
2
even :=

{
(x , t) ∈ Z2; x + t is even

}
.

Each vertex of Z2
even goes to NE or NW,

each with probability 1
2

and independently.

Theorem (Fontes, Isopi, Newman & Ravishankar ’04)

Under a diffusive scaling, this directed forest converges to the BW.
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The 2−dimensional Poisson Tree

Vertex set: a homogeneous PPP N .

e2 = (0, 1): a deterministic direction.

r > 0: a deterministic parameter.

Local rule: each u ∈ N is linked

to the vertex inside the rectangle

{(x(1), x(2)) ∈ R2 : |x(1) − u(1)| < r , x(2) > u(2)}
having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu ’05)

Under a diffusive scaling, this directed forest converges to the BW.
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A discrete and L1 DSF

u

V : site percolation on Z2 with

parameter 0 < p < 1.

Local rule: Each u ∈ V is linked

to the closest v ∈ V in L1−sense

and with v(2) > u(2).

In case of a tie, uniform choice.

Theorem (Roy, Saha & Sarkar ’14)

Under a diffusive scaling, this directed forest converges to the BW.
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The 3 key points

Schertzer et al ’15: simplification of the convergence criteria for

non-crossing paths.

(B2) and FKG inequality =⇒ wedge condition.

A coalescence time estimate based on a new Laplace type argument.

If τℓ is the coalescence time of DSF trajectories from (0, 0) and (0, ℓ),

∃C > 0, ∀t ≥ 0, IP(τℓ > t) ≤ Cℓ
√

t
.

Accurate study of the evolution of DSF paths: breaking points.
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If τℓ is the coalescence time of DSF trajectories from (0, 0) and (0, ℓ),

∃C > 0, ∀t ≥ 0, IP(τℓ > t) ≤ Cℓ
√

t
.
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The joint exploration process
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g0(x), g0(y), g0(z)) = (x, y, z) and H0 = ∅.

Hn: History set and L(Hn): height of Hn.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g1(x), g1(y), g1(z)) and H0 = ∅.

Hn: History set and L(Hn): height of Hn.
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The joint exploration process
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3 DSF paths starting from x, y, z.

(g1(x), g1(y), g1(z)) and H1.

Hn: History set and L(Hn): height of Hn.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g2(x), g2(y), g2(z)) and H1.

Hn: History set and L(Hn): height of Hn.
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(g2(x), g2(y), g2(z)) and H2.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g3(x), g3(y), g3(z)) and H2.

Hn: History set and L(Hn): height of Hn.
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3 DSF paths starting from x, y, z.

(g3(x), g3(y), g3(z)) and H3.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g4(x), g4(y), g4(z)) and H3.

Hn: History set and L(Hn): height of Hn.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g5(x), g5(y), g5(z)) and H4.

Hn: History set and L(Hn): height of Hn.
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The joint exploration process

x

y

z

3 DSF paths starting from x, y, z.

(g5(x), g5(y), g5(z)) and H5.

Hn: History set and L(Hn): height of Hn.

David Coupier DSF to BW Random Graphs 2018 18 / 20



Breaking points for k paths

Let κ ≥ 6. The sequence of good steps (τj)j≥0 is defined by


τ0 = 0,

τj+1 = min
{
kn > τj : n ≥ 1, L(Hkn) ≤ κ and ...

}
, for j ≥ 0.

.

Lemma

There exist c,C > 0 s.t. for any integers j, n ≥ 0

IP

(
τj+1 − τj ≥ n | Fτj

)
≤ Ce−cn ,

where Fn: σ-algebra generated by the first n steps.
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Breaking points for k = 2 paths

The good step τj

κ

(gτj (x), gτj (y)) and Hτj

(x(ℓ), y(ℓ)): restarting points of the ℓ-th perfect step.

Lemma

The sequence
{
(x(ℓ), y(ℓ))

}
ℓ≥0

is a Markov chain.
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