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Population Genetics Models

Model the forces that produce and maintain genetic evolution
within a population.

Mutation: the process by which one individual (gene) changes.
Wants to study the drift of the population: how the frequency of
mutants in the total population evolves.

The Moran Process P. Moran: Random processes in genetics
Cambridge Ph. Soc. 1958



Moran process

I Start with a finite set of n individuals, all non-mutant. Select
one to mutate.

I iterate until all are mutant or all are no mutants
I Select randomly an individual x to replicate.
I Select randomly another y to die.
I Replace y by a clone of x .

Stochastic process. At time t the number mutants evolves in
{−1, 0,+1}.



Evolutionary graph theory (EGT)
Lieberman, Hauert, Nowak: Evolutionary dynamics on graphs
Nature 2005 (LHN)

EGT main question: How does population structure affect the
outcome of the evolutionary process

Graphs have two types of vertices: mutants and non-mutants.

The fitness r of an agent denotes its reproductive rate.
Mutants have fitness r ∈ Θ(1), non-mutants have fitness 1.

For v ∈ V , let N (v) ⊆ V be the set of neighbors of v in G .
v ∈ V extend (being mutant or non-mutant) by cloning a
u ∈ N (v).



Moran process on Evolutionary Graphs

I Given a graph G = (V ,E ), with |V | = n, and an r > 0, where
mutants have fitness r and non-mutants have fitness 1, we
start with all vertices non-mutant.

I The graph also could be directed ~G = (V , ~E ). In this case we
require ~G to be strongly connected.

I Starting for a random mutation on a vertex, the Moran
process is a randomized algorithm on G that study the spread
of the mutation on V .

I The process is Markovian, depending on r it tends to one of
the two absorbing states: extinction, all mutants disappear;
fixation all vertices become mutants.



A particular Moran process

I At t = 0 create uniformly at random a mutant in V

I At any time t > 0, assume we have k mutant and (n − k)
non-mutant vertices.
Define total fitness at time t by Wt = kr + (n − k):

I Choose u with probability r
Wt

if u is mutant and 1
Wt

otherwise,
I Choose uniformly at random a v ∈ N (u), and replace v with

the clone of u



Example of Moran process
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Moran Process

This random process defines discrete, transient Markov chain, on
states {0, 1, . . . , n − 1, n} with two absorbing states: n fixation (all
mutant) and 0 extinction (all non-mutant).
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The fixation probability φG (r) of G is the probability that a single
mutant will takes over the whole G .
The extinction probability of G is ηG = 1− φG (r).



The Markov chain of configurations
A configuration is a set S ⊆ V of mutants.
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Questions to study

Given a connected graph G = (V ,E ) ( ~G strongly connected), and
a fitness r > 0:
1.- Is it possible to compute exactly the fixation probability φG (r)?
Is it possible to give tight bounds to φG (r)?

Difficult for some graphs. For a given G the number of constrains
and variables is equal to the number of possible configurations of
mutants/non-mutants in G ∼ 2n.

2.- Given G, is it possible to bound or compute the expected
number of steps until arriving to absorption?



Complexity issues

Consider the computation of the fixation probability:

I Quantitative question: φG (r)?
The quantitative question is NP-complete.

I Qualitative question: Given an ε > 0, approximate φG (r)
within ε?
The qualitative question is #P-complete.

Ibsen-Jensen, Chatterjee, Nowak: Computational complexity of
ecological and evolutionary spatial dynamics. PNAS, 2015



Properties of fG (r)

Given G = (V ,E ) connected and a fitness r > 0, for any S ⊂ V
let φG ,r (S) denote the fixation probability, when starting with a set
S of mutants. Then,

φG (r) =
∑
v∈S

φG ,r ({v}).

The case r = 1 is denoted neutral drift.

For any r ≥ 1, φG (r) ≥ fG (1)



Isothermal graphs (LHN-05)

Given a directed ~G = (V , ~E ), ∀i ∈ V let deg+(i) be its outgoing
degree:
Define the stochastic matrix W = [wij ], where wij = 1/deg+(i) if
~(i , j) ∈ ~E and wij = 0 otherwise.

The same definition of W applies to undirected G , with
wij = 1/deg(i).

The temperature of i ∈ V is Ti =
∑

j∈V wji

A graph ~G is isothermal if ∀i , j ∈ V , Ti = Tj .



Examples

No isothermal

i j

kl

i j k l


i 0 1 0 0
j 1/3 0 1/3 1/3
k 0 1/2 0 1/2
l 1/2 1/2 0 0

Tj = 2 and Tk = 1/3

Isothermal

i j

kl

i j k l


i 0 1/3 1/3 1/3
j 1/3 0 1/3 1/3
k 1/3 1/3 0 1/3
l 1/3 1/3 1/3 0

Tj = 1 and Tk = 1



Computing the fixation probability: Easy examples

If ~G is a digraph with a single
source then φ ~G (r) = 1

n .
n + 1
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Moran’s fixation Theorem

(LHN-05)

1. For a strongly connected digraph ~G s.t. ∀i , j ∈ V we have
Ti = Tj then

φ~G (r) =
1− 1/r

1− 1/rn

2. If G is undirected, connected and ∆-regular then

φG (r) =
1− 1/r

1− 1/rn
.

Denote ρ = 1−1/r
1−1/rn the Moran fixation probability.



Consequences: Moran’s fixation Theorem

Notice: for large values of n:

I if r < 1 then φG (r) = rn−rn−1

rn−1 → exponentially small.

I if r = 1 then φG (r) = 1
n

I if r > 1 then φG (r)→ 1− 1
r .

Examples of G and ~G with φ = ρ

Kn, ∆n

Cycle Cn



Amplifiers and suppressors

Given G (directed or undirected) and r , G is said to be:

I an amplifier if φG (r) > ρ.

I a suppressor if φG (r) < ρ.

Examples for r > 1 (LHN-05),

The star is an amplifier

φG (r) =
1− 1

r2

1− 1
r2n

> ρ

The superstar star is an amplifier
φG (r) = 1− 1

kr4 > ρ



Suppressors
For any r > 1, any directed ~G is ”one-rooted” iff φ ~G = 1

n .

The directed line and the burst have fixation probability 1
n < ρ,

Suppressors for undirected G
Mertzios,Nikoletseas,Ratopoulos, Spirakis, TCS 2013
The urchin: A perfect matching between Cn and Kn. For
1 < r < 4/3, then they proved that φG (r)→ 1

2 (1− 1
r ) < ρ

n-clique



Amplifiers for the Moran process
Strong amplifiers: graphs for which extinction probability → 0 as n
grows.
LHN asked for the existence of strong amplifiers.
Galanis, Goebel,Goldberg,Lapinskas,Richerby, JACM, 2017
answered in the positive:
There exists an infinite family of digraphs, megastar which is
strongly amplifier.

The papers formalizes the mathematical techniques for formally
analyzing the fixation and extinction probabilities on the Moran
process, for any given family of graphs.



General bounds for φG (r)

Let G = (V ,E ) be any undirected connected graph, with |V | = n.

D.,Goldberg,Mertzios,Richerby,Serna,Spirakis, SODA-2012
(DGMRSS)
For any r ≥ 1, 1

n ≤ φG (r) ≤ 1− 1
n+r , are bounds on the fixation

probability for G . Moreover, for r = 1, φG (1) = 1
n .

Merzios, Spirakis: ICALP-2013
For any ε > 0,

φG (r) ≤ 1− 1

n
3
4

+ε
.



Absorption time for undirected graphs

Given undirected connected G = (V ,E ), with |V | = n, run a
Moran process {St}t≥0, where {St} set of mutants at time t, i.e.
φG (r) =

∑
v∈V φG ,r ({v}).

Define the absorption time τ = min{t | St = ∅ ∨ St = V }.
Whp the Moran’s process reaches absorption in a polynomial
number of steps.
Theorem DGMRSS
Given G undirected, for the Moran process {St} starting with
|S1| = 1:

1. If r < 1, then E [τ ] ≤ r
1−r n

3,

2. if r > 1, then E [τ ] ≤ r
r−1n

4,

3. if r = 1, then E [τ ] ≤ n6.



Sketch of the proof

We bound E [τ ] using a potential function that decreases in
expectation until absorption.

Define the potential function Φ(S) =
∑

v∈S
1

deg(v)

Notice Φ({v}) ≥ 1/n and 0 ≤ φ(Sτ ) ≤ n

For each case r > 1, r = 1, r < 1 at every step

1. compute the evolution of E [φ(St+1)− φ(St)],
I For r < 1, E [φ(St+1)− φ(St)] < r−1

n3 < 0.
I For r > 1, E [φ(St+1)− φ(St)] ≥ (1− 1

r ) 1
n3 .

I For r = 1, E [φ(St+1)− φ(St)] = 0.

2. show that the potential decreases (increases) monotonically
for r < 1 (r > 1).



Aproximating φG (r)

A FPRAS (Fully Polynomial Time Approximation Scheme) for a
function f is a randomized algorithm A such that, given a
0 ≤ ε ≤ 1, for any input x ,

Pr [(1− ε)f (x) ≤ A(x) ≤ (1 + ε)f (x)] ≥ 3

4
,

with a running time ≤ poly(|x |, 1/ε).

Corollary to absorption bounds

I There is an FPRAS for computing the fixation probability, for
any fixed r ≥ 1.

I There is an FPRAS for computing the extinction probability,
for any fixed r < 1.



Worst absorption time for directed graphs
Recall the absorption time of undirected graphs E [τ ] ≤ O(n4).

D.,Goldberg,Richerby,Serna. RSA 2016 (DGRS)
Theorem There is an infinite family of strongly connected digraphs
such that the expected absorption time for an n vertex graph is

E [τ ] = 2Ω(n).

u1 u2

· · ·
uN

v0 v1
· · ·
v4dre

· · ·
v8dre

· · · · · ·
v4dreN

KN

The techniques used to approximate fixation in undirected graphs,
do not work for directed.



∆-regular digraphs

∆-regular digraph: ∀v , deg−(v) = deg+(v) = ∆.

Recall for regular digraphs:
• Fixation probability is ρ, independent of
the particular topology of the graph.

• As n→∞, ρ→ 1− 1
r ,

therefore the expected number of active
steps → n(1− 1

r ), independently of the
graph.



Expected absorption time for regular digraphs, r > 1

(DGRS)
The expected absorption time does depend on the graph.

Theorem Let G be a strongly connected ∆-regular n-vertex
digraph. Then the expected absorption time is

(
r − 1

r2
)nHn−1 ≤ E [τ ] ≤ n2∆,

where Hn is the nth. Harmonic number.

Corollaries

• For Kn (∆ = n − 1) ⇒ E [τ ] = Ω(n log n) and E [τ ] = O(n3).

• For Cn ⇒ E [τ ] = Ω(n log n) and E [τ ] = O(n2).



Undirected ∆-regular and isoperimetric inequality

Given an undirected graph G = (V ,E ), the isoperimetric number
(Harper, J. Comb. Theory 1966) is defined as

i(G ) = min
S

{ |δS |
S
| S ⊂ V , 0 < |S | ≤ |V |/2

}
,

where δS is the set of edges in the cut between S and V \S .

Proposition If G is ∆-regular undirected (good expander)

E [τ ] ≤ 2∆nHn

i(G )
.

For some ∆-reg. G the isoperimetric bound improves the general
theorem.



Applications of the isoperimetric result

• The Kn has i(G ) = Θ(1/
√
n) ⇒

E [τ ] = Θ(n log n) (E [τ ] = O(n3)).

• The
√
n ×√n-grid has i(G ) = Θ(1/

√
n) ⇒

E [τ ] = O(n3/2 log n) (E [τ ] = O(n2)).

• The Cn has i(G ) = 4/n ⇒
E [τ ] = O(n2 log n) (E [τ ] = O(n2)).

Bolobás, Eur. J. Comb. 1988: For ∆ ≥ 3 there is a number
0 < ν < 1 such that, as n→∞, for almost all undirected
∆-regular G, i(G ) = ν∆/2.

• Bollobás result ⇒ for almost all undirected ∆-regular G ,
E [τ ] = O(n log n).



Main tool in proofs: Domination

Given a Moran’s process {Xt} on G , intuition says that for any S
and any S ′ ⊂ S , φS(r) > φS ′(r) and τ(S) < τ(S ′).

∴ To analyze {Xt}, we can couple it with a process {Yt}, which is
easier to analyze.
(For instance by allowing transitions that create new mutants but
forbidding some of the transitions removing mutants).

Then we must ensure that for every t > 1, if X1 ⊆ Y1 ⇒ Xt ⊆ Yt .

NOT ALWAYS TRUE for discrete Moran’s processes



Counterexample

3 ~G

X1

X2

py =
r

2(2r+2)px =
r

2(r+2)

Y1

Y2

1 2

Notice that the only possible value for Y2 to contain X2 is
{1, 2, 3}, which happens with probability r

2(2r+1)

Coupling {Xi} and {Yi} fails as for r > 1,

Pr [X2 6⊆ Y2] ≥ r(r − 1)

2(r + 2)(2r + 1)
> 0



Continuous time process

To use domination for the discrete processes {Xi} and {Yi},
consider the continuous versions X̃ [t] and Ỹ [t], with exponential
clocks,
i.e. any vertex v with fitness rv ∈ {1, r} waits an amount of time
which follows an exponential distribution with parameter rv .

The discrete Moran process is recovered by taking the sequence of
configurations each time a vertex reproduces.

Notice: in continuous time, each v reproduces at a rate given by
rv , independently of the other vertices, (while in discrete time the
population ”coordinates” before deciding who is next to
reproduce).



Coupling Lemma and consequences

Coupling Lemma: For ~G = (V , ~E ), let X ⊆ Y and 1 ≤ r ≤ r ′.
Let X̃ [t] and Ỹ [t] (t ≥ 0) be the continuous-time Moran process
on G with mutant fitness r and r ′, and with X̃ [0] = X and
Ỹ [0] = Y . There is a coupling between the two processes s. t.
X̃ [t] ⊆ Ỹ [t], ∀t ≥ 0.

Theorem For any ~G , if 0 < r ≤ r ′ and S ⊆ S ′ then

f ~G ,r (S) ≤ f ~G ,r ′(S
′).

Corollary (Fixation probability is monotone wrt mutant fitness)
For any ~G and 0 < r ≤ r ′ then, f ~G (r) ≤ f ~G (r ′).

Corollary (Subset domination)
For any ~G and 0 < r then, if S ⊆ S ′ then f ~G ,r (S) ≤ f ~G ,r ′

(S ′).



Glimpse of proof for

(
r − 1

r2
)nHn−1 ≤ E [τ ] ≤ n2∆,

Dominate the process by a Markov chain:

1

n+1

n20

Solve difference equation to find the expected number of active
steps going from state j to state n + 1.

Compute bound on the time you spend in each state j .



Moran process and contact process

Contact process: Stochastic infection process played mostly on
infinite graphs: SIS model, voter model, and others. In the SIS
model, each node can be infected with a probability proportional
to the number of infected neighbors, and can heal with a Poisson
probability with rate 1. The goal is to study the conditions for
epidemic and extinction.
R. Durrett: Some features of the spread of epidemics and
information on random graphs PNAS 2010.

I Moran process similar to the discrete finite version of SIS
model.

I Voter system is Moran process with r = 1.

I Problems and techniques used for contact model are very
different from Moran process. For ex. infection and healing in
SIS is very different than from Moran.



Conclusions

Expected absorption time E [τ ]

G lower bd. upper bd.

Undirected r < 1 O(n3) DGMRSS

Undirected r = 1 O(n6) DGMRSS

Undirected r > 1 O(n4) DGMRSS

Directed r > 1 2Ω(n)
DGRS

Dir. ∆-reg. r−1
r2 nHn−1 n2∆ DGRS

kn Θ(n lg n) DGRS√
n ×√n-grid Ω(n lg n) O(n3/2 lg n) DGRS

hypercube Ω(n lg n) O(n lg2 n) DGRS



Conclusions

I For the basic LHN model, quite a bit of work has been done.
There are stil some open questions as: What happens when
we have a hierarchy of different mutants with different fitness?

I Martin Nowak has been proposing different variation of his
original model for different epidemiology situations. In
particular his I& R graph evolutionary model for ecological
problems is a nice generalization of the basic model. Ibsen,
Chatterjee, Nowak, PNAS, 2015



Thank you for your attention


