
The Lovász local lemma
An introduction and some recent results

Lefteris Kirousis

National and Kapodistrian University of Athens

Joint work with:

I. Giotis J. Livieratos K. Psaromiligkos D. Thilikos

Trivial observation

If

I E1, . . . ,Em mutually independent “undesirable” events over a
probability space Ω.

I Pr[Ei] ≤ p < 1, i = 1, . . . ,m, where p constant (m could be large).

Then

Pr

[
m∧
i=1

Ei

]
≥ (1− p)m > 0.

Therefore there exists an point in Ω where all undesirable events do not
occur. Probabilistic method.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 1/43

Lovász Local Lemma

Suppose that each Ei is mutually independent of all but d of the other
events.
Any sufficient condition for positive probability to avoid all Ei ’s must
involve p and d .

Theorem (Lovász Local Lemma (LLL), 1975)

If
4pd ≤ 1 (Initial Sufficient Condition)

then

Pr

[
m∧
i=1

Ei

]
≥ (1− 2p)m > 0.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 2/43

Non-algorithmic proof of LLL

Hint: Prove by induction on s that for every S ⊆ {1, . . . ,m} with |S | ≤ s
and any i ,

Pr[Ei | ∧j∈SEj] ≤ 2p. (1)

To get that

Pr

[
m∧
i=1

Ei

]
≥ (1− 2p)m > 0.

“The proof is so elementary that it could, and I think it should,
be taught in a first course in probability. It has had and
continues to have a profound effect on probabilistic method.”

– J. Spencer, Ten lectures. . . (Durango lectures)

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 3/43

Applications for Sat

(k, s)-CNF Boolean formulas: exactly k literals per clause and every
variable appears in at most s clauses.

(k , s)-Sat problem: satisfiability of (k , s)-CNF formulas.

Let f (k) be the max number, such that every (k, f (k))-CNF formula is
satisfiable.

Trivially, f (k) < 2k

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 4/43

More on Sat

Theorem (Kratochv́ıl et al. 1993)

For k ≥ 3, (k , f (k) + 1)-Sat is NP-complete.

I f (k) is a threshold ”jump” from always satisfiable to being hard to
check if satisfiable.

Let l(k) be the max number x , such that if all clauses of a formula φ share
variables with at most x other clauses, then φ is satisfiable.

LLL immediately implies:

l(k) ≥ 2k−2.

Obviously: f (k) ≥ l(k)
k + 1. Therefore: f (k) ≥ 2k−2

k + 1.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 5/43

Weaker sufficient conditions

ep(d + 1) ≤ 1 (Euler Number Sufficient Condition)

G = (V ,E) be a dependency graph for Ei :

I A simple graph with vertices the events Ei so that every event is
mutually independent of all events not connected with.

∃ numbers χi ∈ [0, 1) :

Pr[Ei] ≤ χi

∏
{i ,j}∈E

(1− χj) (Asymmetric LLL)

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 6/43

Algorithmic solution

An algorithmic solution presupposes to locate a point in Ω whose
probability can be as small as

(1− 2p)m.

– J. Spencer 1994, Ten lectures. . . (Durango lectures):

“Algorithm? Sometimes!”

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 7/43

The variable framework

Let X1, . . . ,Xl independent random variables.

Each event Ei depends on a subset of the variables.

This subset is called the scope of Ei ; denoted by ei .

Two events Ei ,Ej are dependent (Ei ∼ Ej) iff ei ∩ ej 6= ∅.
Dependency graph: Vertices correspond to events, unconnected
vertices must correspond to independent events. Degree: d

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 8/43

The dependency graph, an example

Seven variables: X1, . . . ,X7, six events: E1, . . . ,E6

e1 = {X1,X2,X3}, e2 = {X3,X4}, e3 = {X4,X5,X6,X7},
e4 = {X2}, e5 = {X6}, e6 = {X4,X5,X7}

E1 E2 E3

E4 E5 E6

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 9/43

Back to the variable framework

Let X1, . . . ,Xl independent random variables.

Each event Ei depends on a subset of the variables.

This subset is called the scope of Ei ; denoted by ei .

Two events Ei ,Ej are dependent (Ei ∼ Ej) iff ei ∩ ej 6= ∅.
Dependency graph: Vertices correspond to events, unconnected
vertices must correspond to independent events. Degree: d

Ni , the neighborhood of Ei is the set of events Ej such that Ej ∼ Ei

(Ei included in Ni).

|Ni | ≤ d + 1,∀i = 1, . . . ,m.

Assume sampling the Xi ’s can be done efficiently.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 10/43

Back to a trivial case

I E1, . . . ,Em “undesirable” events, each depending on some of the
variables X1, . . . ,Xl , such that ∀i ,Pr[Ei] ≤ p < 1
(p a constant).

I Assume that the scopes of the events are pairwise disjoint (events are
mutually independent).

To find an assignment to the variables such that
∧m

i=1 Ei ,

do: for i = 1, . . . ,m, sample and resample the variables in the scope of Ei

until Ei does not occur. Expected time for each i : 1
1−p .

What if Ei are not independent (their scopes intersect)?

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 11/43

Basic idea: 2nd law of thermodynamics

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 12/43

Basic idea: 2nd law of thermodynamics

You often see this:

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 13/43

Basic idea: 2nd law of thermodynamics

However, you never see this:

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 14/43

2nd law of thermodynamics

Physicist’s view: There is no spontaneous entropy decrease. You need
energy to transfer heat from cold to hot.

Layman’s view: There is no free lunch. You’ve got to do work to build
something.

Information theorist’s view: There is no lossless binary code with average
code length of a symbol less than the entropy of a random symbol in the
source (source entropy). You have to give up information to suppress more.

Combinatorialist’s ’s view: There are far more ways to lay a collection of
bricks into a heap than into a building.

Idea: Design a randomized algorithm that can only fail in a structured way.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 15/43

Moser’s algorithm (2010)

Start with a random assignment to the variables X1, . . . ,Xl obtained
sampling them independently.

Choose an event E that occurs under the current assignment and
resample the variables in its scope (independently).

Repeat

Always give priority to events that are neighbors to (share a variable
with) the event examined last.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 16/43

Moser’s algorithm, (pseudo-)formally

Algorithm

1: Sample all Xi ’s (independently); α be the resulting assignment.
2: while ∃ event that occurs under the current assignment, let Ei be the

least indexed such event do
3: Resample(Ei)
4: end while
5: Output current assignment α

Resample(Ei)

1: Resample the variables in the scope ei (independently).
2: while some Ej ∈ Ni occurs for the current assignment α, let Ej be the

least indexed such event do
3: Resample(Ej)
4: end while

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 17/43

Obvious, and almost obvious facts

I Root Phase: The part of the algorithm within a root call of
Resample

I Phase: The part of the algorithm within a call of Resample

I Phases are nested

Facts

if Algorithm halts, it produces an assignment that avoids all
undesirable events. recall

None of the events of a phase occurs at the end of it.

All events that do not occur at the start of a phase, do not occur at
the end of it as well.

Therefore there are at most m (number of events) successive root
phases.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 18/43

The witness forest I

E1E1 E2E2 E3E3 E4 E5E5 E6E6

E2E2E1E1 E3E3 E6E6

E2E1E1 E4 E3E3E2 E6E6

E5E5 E6E6

E3E2 E5 E6E6

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 19/43

The witness forest, formally

We restrict our attention to a root phase only, call it P (therefore, we
deal with a tree). recall

Consider the events of all recursive calls within P in the order they
appear on top of P’s recursion stack.

Thus we get a tree whose nodes are the events of the recursive calls
of P. We call this tree the witness tree of the phase P.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 20/43

The witness forest continued

E1

E1,1

E1,k

E1,k,1

...

E1,k,d+1

...

E1,d+1· · · · · ·

· · ·

E1 is the event of the root call.

Let E1,k be the k-th child of E1.
Continue recursively.

The children of any E on the tree are
events that are ∼ E and are pairwise
different.

Therefore the out-degree of the tree is
d + 1.

The same event may appear more than
once in the tree. recall

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 21/43

More on the witness forest

Algorithm produces a sequence α1, . . . , αn of value assignments such
that

I Ei occurs for αi .

I α1 is a random assignment to all variables.

I αi+1 is obtained from αi by resampling the variables in the scope of
Ei . recall

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 22/43

The previous approach to analysis
The entropic argument

Basic ingredients of the previous proof

From the witness tree and the output assignment reconstruct the
history of the random choices of the algorithm (uniqueness property).

So we have a lossless coding of the process.

Conclude that the expected length of the witness forest is
exponentially small.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 23/43

Alternative proof: Direct computation
of the distribution of the #(steps) of Algorithm
Giotis et al. 2015

Qn: Probability that the phase P lasts for at least n recursive calls
equals the probability that P has a witness tree of size at least n.

Qn’s first factor is p, because E1 occurs under the random α1.

Subsequent factor: Qn1 · · ·Qnd+1
, where Qn1 , . . . ,Qnd+1

are the
probabilities that the witness subtrees starting from the children of
E1, have sizes n1, . . . , nd+1, where

d+1∑
i=1

ni = n − 1.

Qni+1 should be computed conditional on E1 and the events
corresponding to the probabilities Qn1 , · · · ,Qni .

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 24/43

E1

E1,1

· · ·
...

n1 steps

· · ·
...

E1,d+1

· · ·
...

nd+1 steps

n steps

Formally,

Qn = p
∑

n1+···+nd+1=n−1
n1,...,nd+1≥0

Qn1 · · ·Qnd+1
.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 25/43

Preservation of distribution

Qn and Qni “refer to the same distribution”, the original one, where
all variables are sampled independently.

Why?

Because resampling the variables of an event –immediately after it is
“seen” to occur– “destroys” all information exposed by the knowledge
of its occurrence.

Conditioning that the event actually occurred is necessary for this
“re-initialization of the distribution”.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 26/43

Throw two binary fair dice. Output follows uniform distribution:

0 0 0 1 1 0 1 1

Rethrow the second dice if it is an ace (output is not uniform):

0 0 00 01 1 0 10 11

However, conditional the second die was an ace, then the distribution is
uniform.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 27/43

Recurrence

So we now have a recurrence relation:

Qn = p
∑

n1+···+nd+1=n−1
n1,...,nd+1≥0

Qn1 · · ·Qnd+1
, Q0 = 1,

Where all Qi are computed with respect to the same distribution, that of
the independent variables.
The above recurrence holds for all phases.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 28/43

Solution of the recurrence

Qn = p
∑

n1+···+nd+1=n−1
n1,...,nd+1≥0

Qn1 · · ·Qnd+1
, Q0 = 1.

Multiply both sides with zn and add for n = 1, . . . ,∞, to get that the
OGF Q(z) of Qn satisfies:

Q(z)− 1 = zpQn(z).

Now apply the Lagrange inversion and then Stirling approximation to get
that Qn is bounded by

C

((
1 +

1

d

)d

p(d + 1)

)n

< C (ep(d + 1))n ,

for some constant C .
Therefore...

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 29/43

Algorithmic Lovász Local Lemma

If (
1 +

1

d

)d

p(d + 1) < 1

(and therefore if ep(d + 1) ≤ 1),
then
Algorithm stops within n steps with probability exponentially close to 1
with n.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne skip 30/43

But there is a catch!

We claimed that resampling the variables of an event –immediately
after it is “seen” to occur– “destroys” all information exposed by the
knowledge of its occurrence.

This is wrong!

Because when an event is selected, additional knowledge besides its
occurring is utilized to make the selection (e.g. that it is the first
occurring event).

This additional info concerns variables not in the scope of the event
selected.

So biases are introduced that are retained even after the resampling.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne skip 31/43

Way out of the catch

Design an algorithm, we called the Validation Algorithm, that

takes as input a candidate for a witness tree, and follows it as a
blueprint for which events to consider.

So the algorithm does not have to select events (the act of selecting
entails comparing events and therefore biases are introduced).

The probability Qn of our original algorithm, is upper-bounded by the
corresponding probability of the Validation Algorithm.

So the recurrence is applicable. Done!

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne skip 32/43

The Validation Algorithm

E1E1 E2E2 E3E3 E4 E5E5 E6E6

E2E2E1E1 E3E3 E6E6

E2E2E1E1 E4 E3E3E2E2 E6E6

E5E5 E6E6

E3E3E2E2 E5E5 E6E6

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne skip 33/43

So what?

What is the advantage of this “direct probabilistic method”?

Whereas Moser and Tardos use a backward-looking argument to
find witness trees in the algorithms “log”, Giotis et al. analyze a
forward-looking structure: the tree of resampled events and their
dependencies, looking forward in time. This viewpoint seems
more natural and suitable for extensions.

— Harvey and Vondrak, 2015.

Moreover, our method yields an exponentially small estimate for
Moser-type algorithms to fail. Whereas, the entropy besed approach gives
only an estimate of the expectation until success.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 34/43

Extensions

Lopsidependent LLL: Only dependencies between negatively dependent
events count (Erdős, 1991).

We give below, in the variable framework, a notion of dependency stronger
than the classical negative dependence that it leads to sparser graphs,
which in certain examples turn out to be “quite” sparser.

Definition

The event Ej is called d-dependent on the event Ei if there is an
assignment α such that:

under α, Ei holds but Ej does not, and

the variables of Ei can be resampled so that Ei stops holding, but Ej

holds.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 35/43

d-Dependence

Notice that d-dependency is a directed notion. Intuitively :
Ej is d-dependent on Ei if it is possible that some successful attempt
to avoid the occurrence of Ei may end up with Ej occurring, although
initially it did not.

d-Dependence is reminiscent of the notion of lopsidependency
introduced by Moser and Tardos (not a directed notion).

Nevertheless, directed dependence notions were introduced by Harvey
and Vondrak (2015) and by Achlioptas and Iliopoulos (2014).

However, d-dependency is stronger than all (the latter two however
are stated for general proability spaces, not products of independent
random variables).

Actually, there are cases where the d-dependency graph is empty,
whereas the dependency graphs for all previous notions are not.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 36/43

Further applications? Even if non-algorithmic
(with a grain of salt – not published yet)

Theorem (K., Livieratos et al.)

Assume that that any variable belongs to the scope of at most k events
and that the probability of at least one of these events occurring is at
most q. If ekq ≤ 1 then there is an assignment that avoids all events.

I If q is computed by union bound, then we essentially get the classical
result.

I So the above result offers an advantage in case q can be estimated
more cleverly than using union bound.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 37/43

Drawbacks of the previous approach

But how to algorithmically find this occurring neighbor?

I Outsource: call an external agent that will make the selection of
occurring events.

I Since, however, one never can completely trust the quality a product
an outsourced product, a situation reminiscent of Interactive
Protocols arises.

I But, you loose efficiency.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 38/43

Reminder: A classical example – Graph non-isomorphism

Two graphs G1,G2, we (the “verifier”) want to find out whether they
are isomorphic or not.

We are willing to ask a omniscient “prover”, however we do not trust
her, as she may lie. So what to do?

We randomly (and secretly) choose one of the graphs, permute its
vertices and ask the prover which is the source graph. We repeat
several times.

If the graphs are non-isomorphic, there is a prover (the conscientious
one) that will always give the correct answer.

If the graphs are non-isomorphic, then whoever the prover, it is highly
improbable to get the right answer sufficiently more than half the
times.

Technical definition: Graph non-isomorphism belongs to the
complexity space known as IP (has been shown to be equal to
PSPACE).

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 39/43

An interactive protocol for LLL

I The verifier moves from variable to variable.

I Asks the prover to send an occurring event

I Verifies that the event is indeed occurring

I If it is, then it resamples its variables

I Recourses.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 40/43

Applications: acyclic coloring —work in progress

Acyclic coloring: Proper coloring so that any two-color subgraph has no
cycles.

Dates back to Grünbaum [1973]. Originally it referred only to planar
graphs. It was then proved proved that the number of colors needed for a
planar graph is 5.

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 41/43

More recently, upper bounds for general graphs in terms of the max degree
∆ were sought.

Best result to-date: α(G) = 1.5∆4/3 + ∆ + o(∆) [Gonçalves et al. 2010].

Such problems amenable to interactive LLL, because of the possibility to
express the existence of a bicolored cycle that contains a given vertex
(edge).

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 42/43

Thank You for Your Attention

Inst. Camille Jordan, Univ. Jean Monnet, Saint Étienne 43/43

