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Glauber dynamics of random planar tilings
Markov chain on tilings/perfect matchings
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Elementary updates:

taux = 1



Glauber dynamics of random planar tilings

Soft facts:

• Ergodicity;

• Unique invariant measure: uniform πΛ (also reversible)

• finite mixing time:

Tmix = Tmix(Λ) = {inf t > 0 : max
η
‖µηt − πΛ‖TV ≤ 1/4}

• Dynamics is monotone: stochastic order is preserved.

Questions:

• Rapid mixing? (Tmix polynomial in |Λ|)
• Precise estimates on Tmix as Λ large?

• What “typical path” for convergence to equilibrium?



Another example: domino tilings

Elementary updates:

rate 1



Another example: domino tilings

Graph is planar and bipartite ⇒ height function
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Comments

• Non-obvious fact: counting number of configurations is
computationally easy (compute |Λ| × |Λ| determinant).

• As a consequence, ∃ ways of sampling random rhombus- or
domino tilings that are quick (even quicker than Glauber
dynamics (Mucha-Sankowski, D. Wilson, ...)).

• Appeal of Glauber dynamics for statistical physics: Markov
dynamics of discrete interface (height function h(x , t)).

• Law of large numbers for h(·, t) suitably rescaled as
L−1h(L·, L2t)? (Diffusive scaling. Here, L is diameter of Λ)



The LRS “tower-move” dynamics

Luby-Randall-Sinclair ’01: auxiliary dynamics with “tower-moves”

rate = 1/n
n

Similar for dominos:

rate = 1/n
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The LRS “tower-move” dynamics

• Easy: ergodicity, invariance & reversibility of πΛ, monotonicity
of dynamics are still ok

• Non-trivial fact: mutual volume between configurations

∆V (h(1)(t), h(2)(t)) :=
∑

x

h(1)(x , t)− h(2)(x , t)

is super-martingale (martingale apart from boundary effects)

• easy to deduce via a coupling argument:

T tower
mix = O(L6+o(1)) (Rapid mixing)

• idea:
• enough to estimate coalescence time of maximal and minimal

configurations
• mutual volume is at most O(L3)
• symmetric RW in [0, . . . , L3] hits zero in time at most

L2×3+o(1).



The LRS “tower-move” dynamics

• Simple to deduce (via comparison of Markov chain spectral
gaps):

Tmix = O(L8+o(1))

where 8 = 6 + 2, because tower moves have size at most L and
n2+o(1) single-flip steps are needed to simulate a size-n jump.

rate = 1/n
n

• More refined result by D. Wilson ’04:

T tower
mix = O(L2 log L)

(optimal) for rhombus tiling “tower” dynamics.



Wilson’s idea

1
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∂tEH(x , t) = ∆xEH(x , t), H(x , t) =
L∑

j=1

p(j)(x , t), −L ≤ x ≤ L.

The L2 log L mixing time bound comes from heat equation scaling:

E∆V (η+(t), η−(t)) ≈ L3e−t/L2 � 1 if t ≥ cL2 log L.



Macroscopic shapes

Size-L hexagon ΛL



Macroscopic shapes

Size-L square ΛL



Macroscopic shapes

In both cases, L−1ΛL tends as L→∞ to domain D ⊂ R2 and the
boundary height tends to limit function on ∂D.

Theorem [Cohn-Kenyon-Propp ’01] There exists deterministic
function h̄ : D 7→ R such that

lim
L→∞

πΛL

(∣∣∣∣1Lh(xL)− h̄(x)

∣∣∣∣ ≥ ε) = 0

for every x ∈ D.

The marcroscopic shape can be C∞ or exhibit “frozen regions”



Macroscopic shapes

In this case, h̄(·) is affine.



An almost-optimal mixing time result

Theorem 1 [P. Caputo, F. Martinelli, F.T., ’12, B. Laslier, F.T., ’15]

Assume that the macroscopic shape h̄(·) is affine. Then,

Tmix(ΛL) = O(L2+o(1)).

Theorem 2 [B. Laslier, F.T., ’15] Assume that h̄(·) is C∞. Then, at
time t ≥ L2+ε, w.h.p.∣∣∣∣1Lh(x , t)− h̄(x/L)

∣∣∣∣ ≤ δ ∀x ∈ Λ.

(does not imply Tmix upper bound)

Note: single-flip and “tower” dynamics are essentially equally fast.



Comments on the result

Proof is kind of involved.

Main ingredients:

1 under πΛL
, height fluctuations from macroscopic shape are

w.h.p. O(log L)

2 item (1) plus Wilson’s result on T tower
mix gives: if initial height

is Lo(1) away from equilibrium profile, equilibrium is reached
after time L2+o(1)

3 Peres-Winkler “censoring inequality” for monotone Markov
chains



Expected: Hydrodynamic limit

We expect: if the initial condition approximates smooth profile,

lim
L

1

L
h(xL) = φ0(x)

then

lim
L

1

L
h(xL, tL2) = φ(x , t)

with φ solving parabolic, non-linear PDE

∂tφ = µ(∇φ)
2∑

i ,j=1

σi ,j (∇φ)∂2
xi ,xj

φ.

{σi ,j}: positive symmetric matrix, Hessian of entropy function.
µ(·) > 0: mobility.



Hydrodynamic equation can be rewritten as

∂tφ = −µ(∇φ)
δΣ[φ]

δφ(x , t)

with Σ[φ] the entropy functional

Σ[φ] =

∫
σ(∇φ)dx .

Entropy: indepent of transition rates

−σ(ρ) = lim
L→∞

1

L2
log #{tilings of L×L domain with global slope ρ}

Mobility µ: depends on the Markov chain rates



Linear response

In general (e.g. single-flip Glauber) not possible to compute µ
explicitly.
Green-Kubo formula (non-rigorous, linear response theory):

µGK (ρ) = lim
L

1

2L2
πL,ρ

∑
flips

cflip(h)[∆V (flip)]2


− lim

L

1

L2

∫ ∞
0

EπL,ρ
[Drift(h(0)) Drift(h(t))] dt

πL,ρ: uniform measure on L× L torus, restricted to configurations
with slope ρ.

Drift(h) =
∑
flip

cflip(h)∆V (flip)



Gradient condition

It may happen that summation by parts on the torus gives

Drift(h) ≡ 0 (?)

for every configuration h.

• For single-flip Glauber dynamics, (?) does not hold.

• For tower-move dynamics, it does.
Origin: martingale property of volume

• Moreover, in this case

µGK (ρ) = lim
L

1

2L2
πL,ρ

∑
flips

cflip(h)[∆V (flip)]2


can be computed [S. Chhita, P. Ferrari ’15, B. Laslier, F.T., ’17]



Green-Kubo mobility for the tower dynamics

Infinite-volume measure πρ = limL πL,ρ has determinantal
structure:

πρ(event involving n edges) = det(n × n matrix).

Computation gives:

µGK (ρ) =
1

π

sin(πρ1) sin(πρ2)

sin(π(1− ρ1 − ρ2))

ê1 ê2

ρ1 = ∇1h =density of

ρ2 = ∇2h =density of
(0, 0)

(0,−1) (−1, 0)

(−1,−1)
(−1,−2) (−2,−1)

(−2,−2)



A hydrodynamic limit for the tower dynamics

We need two assumptions:

• We work with periodic b.c. (dynamics on the torus).

• The initial profile φ0 is smooth (say C 2, because we were
lazy) and nowhere “extremal” (cannot be weakened).

Theorem 3 [B. Laslier, F. T. ’18]
For every t > 0, x ∈ [0, 1]2, convergence to the limit PDE:

P
(∣∣∣∣h(xL, tL2)

L
− φ(x , t)

∣∣∣∣) > ε→ 0

with φ unique, classical solution of

∂tφ = µGK (∇φ)
2∑

i ,j=1

σi ,j (∇φ)∂2
xi ,xj

φ.



Remarks on the PDE

• non-trivial fact I: L1 contraction:

∂t

∫
[0,1]2

dx(φ(1)(x , t)− φ(2)(x , t)) = 0.

Microscopic origin: volume between 2 configurations is
martingale

• non-trivial fact II: L2 contraction.

∂t

∫
[0,1]2

(φ(1)(x , t)− φ(2)(x , t))2 ≤ 0

(would be trivial if µGK (·) ≡ 1).



Open problems

• Prove (or disprove) that Tmix of Glauber dynamics in size-L
hexagon or size-L Aztec diamond is O(L2+o(1)). Issue: frozen
regions. Best upper bound: O(L4+o(1)).

• Rapid mixing for perfect matchings of more general planar
bipartite graphs?
E.g.

Missing: generalization of tower-move trick.

• Possible slow mixing due to “gaseous phases”??



Conclusions

• single-flip version of the process is very hard, only bounds on
mixing/relaxation time...

• ...but “natural” modified version (tower-dynamics) can be
analyzed in detail (Tmix, law of large numbers for height
profile)

• Ongoing project (with T. Funaki): dynamical large deviations.
Explicit LDP functional

1

L2
logP(L−1h(L·, L2·) ∼ φ(·, ·))

L→∞→ I(φ)



Thanks!


