Random tiling dynamics

F. Toninelli, CNRS and Université Lyon 1

Saint-Etienne, October 2018



Glauber dynamics of random planar tilings
Markov chain on tilings/perfect matchings

Elementary updates:




Glauber dynamics of random planar tilings

Soft facts:
e Ergodicity;
e Unique invariant measure: uniform ma (also reversible)

e finite mixing time:
T = Taix(A) = {inf £ > 0 max | — ma|l v < 1/4}

e Dynamics is monotone: stochastic order is preserved.
Questions:

¢ Rapid mixing? (Tmix polynomial in |A])

e Precise estimates on Ty,ix as A large?

e What “typical path” for convergence to equilibrium?



Another example: domino tilings
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Elementary updates:
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Another example: domino tilings

Graph is planar and bipartite = height function
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Comments

e Non-obvious fact: counting number of configurations is
computationally easy (compute |A| x |A| determinant).

e As a consequence, 3 ways of sampling random rhombus- or
domino tilings that are quick (even quicker than Glauber
dynamics (Mucha-Sankowski, D. Wilson, ...)).

e Appeal of Glauber dynamics for statistical physics: Markov
dynamics of discrete interface (height function h(x, t)).

e Law of large numbers for h(-, t) suitably rescaled as
L=Yh(L-, L?t)? (Diffusive scaling. Here, L is diameter of A)



The LRS “tower-move” dynamics

Luby-Randall-Sinclair '01: auxiliary dynamics with “tower-moves”

rate = 1/n
n -—
Similar for dominos:

Py — rate = 1/n ‘
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The LRS “tower-move” dynamics
e Easy: ergodicity, invariance & reversibility of A, monotonicity
of dynamics are still ok

e Non-trivial fact: mutual volume between configurations

AV (KM (1), (1)) Zh(l) x, t) — h®(x, t)

is super-martingale (martingale apart from boundary effects)

e easy to deduce via a coupling argument:
Ttower — O(Lt°(W)  (Rapid mixing)

e idea:

e enough to estimate coalescence time of maximal and minimal
configurations
e mutual volume is at most O(L3)

e symmetric RW in [0,..., L%] hits zero in time at most
L2X3+O(1).



The LRS “tower-move” dynamics

e Simple to deduce (via comparison of Markov chain spectral

gaps):
Tmix — O(L8+o(1))

where 8 = 6 4 2, because tower moves have size at most L and
n2to(1) single-flip steps are needed to simulate a size-n jump.

rate = 1/n

e More refined result by D. Wilson '04:
T tower _ O(L2 |og L)

mix

(optimal) for rhombus tiling “tower” dynamics.



Wilson's idea
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O:EH(x, t) = AEH(x,t), H(x,t)=> pW(x,t), —-L<x<L
j=1

The L?log L mixing time bound comes from heat equation scaling:

EAV(gH(t),n (1) ~ e Y <1 if  t>clloglL.



Macroscopic shapes

Size-L hexagon Ay
.




Macroscopic shapes

Size-L square A\,



Macroscopic shapes

In both cases, L=1A; tends as L — oo to domain D C R? and the
boundary height tends to limit function on 9D.

Theorem [Cohn-Kenyon-Propp '01] There exists deterministic
function h: D — R such that
> e> =0

The marcroscopic shape can be C* or exhibit “frozen regions'

im 7, (“h(xL) ~R(x)

for every x € D.



Macroscopic shapes

In this case, h(-) is affine.



An almost-optimal mixing time result

Theorem 1 [P. Caputo, F. Martinelli, F.T., '12, B. Laslier, F.T., '15]
Assume that the macroscopic shape h(-) is affine. Then,

Tumix(AL) = O(L2F°W),

Theorem 2 [B. Laslier, F.T., '15] Assume that h(-) is C*°. Then, at
time t > L%1€ w.h.p.

%h(x, D —h(x/L)| <5 vxen

(does not imply Ty,ix upper bound)

Note: single-flip and “tower” dynamics are essentially equally fast.



Comments on the result

Proof is kind of involved.

Main ingredients:
@ under 7y, height fluctuations from macroscopic shape are
w.h.p. O(logL)
@® item (1) plus Wilson's result on T9%" gives: if initial height
is L°() away from equilibrium profile, equilibrium is reached
after time [2+o(1)

© Peres-Winkler “censoring inequality” for monotone Markov
chains



Expected: Hydrodynamic limit

We expect: if the initial condition approximates smooth profile,
im | A(xL) = o(x)
im = h(xL) = ¢o(x
L L 0

then 1
lim (L, tL?) = ¢(x, t)

with ¢ solving parabolic, non-linear PDE
2
Orp = (V) Y 01 (V)O3 0.
ij=1

{oij}: positive symmetric matrix, Hessian of entropy function.
w(-) > 0: mobility.



Hydrodynamic equation can be rewritten as

0% [¢]

8t¢ = _M(V(b) 6¢(X, t)

with X[¢] the entropy functional
Y[¢] = /U(ng)dx.
Entropy: indepent of transition rates

1
—o(p) = Lll_>ngo 2 log #{tilings of Lx L domain with global slope p}

Mobility p: depends on the Markov chain rates



Linear response

In general (e.g. single-flip Glauber) not possible to compute p
explicitly.
Green-Kubo formula (non-rigorous, linear response theory):

.1 ,
ner(p) = fim=5m, | D cain(h)AV (flip)]?
flips

_|i£nL12/OOO E., , [Drift(h(0)) Drife(h(£))] dt

TL,p: uniform measure on L x L torus, restricted to configurations
with slope p.

Drift(h Z crip(h) AV (flip)
flip



Gradient condition

It may happen that summation by parts on the torus gives
Drift(h) =0 (%)

for every configuration h.

e For single-flip Glauber dynamics, (%) does not hold.

e For tower-move dynamics, it does.
Origin: martingale property of volume

e Moreover, in this case

.1 ,
ner(p) = lim o5, > caip(M[AV(flip)]?
flips

can be computed [S. Chhita, P. Ferrari '15, B. Laslier, F.T., '17]



Green-Kubo mobility for the tower dynamics

Infinite-volume measure 7, = lim, 7 , has determinantal
structure:

mp(event involving n edges) = det(n x n matrix).
Computation gives:

1 sin(mpy) sin(mp2)
pek(p) = — sin(m(1 — p1 — p2))

p1 = Vih =density of Q
p2 = Vah =density of ’




A hydrodynamic limit for the tower dynamics

We need two assumptions:

e We work with periodic b.c. (dynamics on the torus).
e The initial profile ¢ is smooth (say C?, because we were
lazy) and nowhere “extremal” (cannot be weakened).

Theorem 3 [B. Laslier, F. T. "18]
For every t > 0, x € [0, 1], convergence to the limit PDE:

. (\ h(xLitL2) o)

>>e—>0

with ¢ unique, classical solution of

2
0:¢ = ek (Vo) Z UiJ(V¢)3§,,xj¢-

ij=1



Remarks on the PDE

e non-trivial fact I: ! contraction:
o, / dx(6D(x, t) — 6O (x, £)) = 0.
[0,1]2
Microscopic origin: volume between 2 configurations is

martingale

e non-trivial fact II: .2 contraction.
0 [ (@) - 60(x )2 <0
[0,1]2

(would be trivial if pgk(-) = 1).



Open problems

e Prove (or disprove) that Ty of Glauber dynamics in size-L
hexagon or size-L Aztec diamond is O(L%T°(1)). Issue: frozen
regions. Best upper bound: O(L*t°(1)).

e Rapid mixing for perfect matchings of more general planar
bipartite graphs?
Eg.

J— O
Missing: generalization of tower-move trick.

e Possible slow mixing due to “gaseous phases”’ 7?7



Conclusions

e single-flip version of the process is very hard, only bounds on
mixing/relaxation time...

e ..but “natural” modified version (tower-dynamics) can be
analyzed in detail ( Tpix, law of large numbers for height
profile)

e Ongoing project (with T. Funaki): dynamical large deviations.
Explicit LDP functional

L

o5 log B(L™A(L, L22) ~ 6(-,-)) =5 Z(9)



Thanks!



