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Counting proper colourings

G: graph on n vertices and maximum degree A
k: positive integer, number of colours.

Qu(G): set of proper vertex k-colourings of G.
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Counting proper colourings

G: graph on n vertices and maximum degree A
k: positive integer, number of colours.

Qu(G): set of proper vertex k-colourings of G.

Q: What is the complexity of computing |Q4(G)|?
- Decide if |Q2(G)| > 0 is NP-complete (Karp, 1972).
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Counting proper colourings

G: graph on n vertices and maximum degree A
k: positive integer, number of colours.

Qu(G): set of proper vertex k-colourings of G.

Q: What is the complexity of computing |Q4(G)|?
- Decide if |Q2(G)| > 0 is NP-complete (Karp, 1972).
- |Q«(G)] is exponentially large in n.
- Computing |Q«(G)| is §P-complete (Valiant, 1979).

Q: Is it possible to approximate [Qx(G)| efficiently?

A fully polynomial-time randomised approximation scheme (FPRAS), is a
randomised algorithm that runs in polynomial time in n and 1/6 whose output
is (1 +6)|Q«(G)| with “high” probability.

Guillem Perarnau Efficient sampling of random colorings



Random colourings and Glauber dynamics

A fully polynomial-time almost uniform sampler (FPAUS), is a randomised
algorithm that runs in polynomial time in n that generates an element of
Q«(G) according to a probability distribution that is “close” to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) <« Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.
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Q«(G) according to a probability distribution that is “close” to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) < Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.

Glauber dynamics: Markov chain (X;)
with state space Q,(G) and transitions
defined by:

- Choose u varin V(G).
- Choose ¢ war in [k].
- Let Xer1(v) = Xi(v), for v # u.

- If c ¢ Xe(N(u)) then Xet1(u) = c;
otherwise X;i1(u) = Xe(u).
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Mixing time of Glauber dynamics

Remarks:
- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X) is aperiodic, symmetric and reversible.
- k= A+2= (X;) irreducible

Guillem Perarnau Efficient sampling of random colorings 4 /17



Mixing time of Glauber dynamics

Remarks:
- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X) is aperiodic, symmetric and reversible.
- k= A+2= (X;) irreducible

k=A+2 = (X;) converges to a uniform random colouring.

Guillem Perarnau Efficient sampling of random colorings 4 /17



Mixing time of Glauber dynamics

Remarks:
- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X:) is aperiodic, symmetric and reversible.
- k= A+2= (X;) irreducible
k=A+2 = (X;) converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist 7:

tmix(€) := min {t :max |P(a,.) — 7| 7v < e} .
e
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- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X:) is aperiodic, symmetric and reversible.
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k=A+2 = (X;) converges to a uniform random colouring.
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Mixing time of Glauber dynamics

Remarks:
- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X:) is aperiodic, symmetric and reversible.
- k= A+2= (X;) irreducible

k=A+2 = (X;) converges to a uniform random colouring.
Mixing time of MC with transition matrix P and stat. dist 7:
tmix = min {t : max [P (c,.) — 7| rv < 1/4} .
oe

Denote mixing time of Glauber dynamics by tGiau.

Guillem Perarnau Efficient sampling of random colorings 4 /17



Mixing time of Glauber dynamics

Remarks:

- k=A+1= |Q(G)| > 0 (greedy algorithm).

- (X:) is aperiodic, symmetric and reversible.

- k= A+2= (X;) irreducible

k=A+2 = (X;) converges to a uniform random colouring.
Mixing time of MC with transition matrix P and stat. dist 7:
tmix = min {t : max [P (c,.) — 7| 7v < 1/4} .
oe

Denote mixing time of Glauber dynamics by tGiau.

tciau polynomial in nfor k > A+2 = (X;) gives a FPAUS

Guillem Perarnau Efficient sampling of random colorings 4 /17



Mixing time of Glauber dynamics

Remarks:

- k=A+1= |Q(G)| > 0 (greedy algorithm).

- (X:) is aperiodic, symmetric and reversible.

- k= A+2= (X;) irreducible

k=A+2 = (X;) converges to a uniform random colouring.
Mixing time of MC with transition matrix P and stat. dist 7:
tmix = min {t : max [P (c,.) — 7| 7v < 1/4} .
oe

Denote mixing time of Glauber dynamics by tGiau.

tglau polynomial in nfor k > A+2 = (X;) gives a FPAUS (= FPRAS)

Guillem Perarnau Efficient sampling of random colorings 4 /17



Mixing time of Glauber dynamics

Remarks:
- k=A+1= |Q(G)| > 0 (greedy algorithm).
- (X:) is aperiodic, symmetric and reversible.
- k= A+2= (X;) irreducible

k=A+2 = (X;) converges to a uniform random colouring.
Mixing time of MC with transition matrix P and stat. dist 7:
tmix = min {t : max [P (c,.) — 7| rv < 1/4} .
oe

Denote mixing time of Glauber dynamics by tGiau.

tglau polynomial in nfor k > A+2 = (X;) gives a FPAUS (= FPRAS)

Conjecture (FoIhore)]

If k > A+ 2, Glauber dynamics for k-colourings of G on n vertices satisfies

tGlau(€) = n°®

(stronger version: O(nlogn)) .
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Previous results

Conjecture: If k > A + 2, then tglau = n°® (stronger: O(nlogn)).

Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlog n).

Guillem Perarnau Efficient sampling of random colorings 5/17



Previous results

Conjecture: If k > A + 2, then tglau = n°® (stronger: O(nlogn)).

Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlog n).

Jerrum (1995) / Salas and Sokal (1997): k > 2A, tgiau = O(nlogn).

Guillem Perarnau Efficient sampling of random colorings 5/17



Previous results

Conjecture: If k > A + 2, then tglau = n°® (stronger: O(nlogn)).

Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlog n).
Jerrum (1995) / Salas and Sokal (1997): k > 2A, tgiau = O(nlogn).

Vigoda (1999): k > 11A/6, then tciau = O(n?).

Guillem Perarnau Efficient sampling of random colorings 5/17



Previous results

Conjecture: If k > A + 2, then tglau = n°® (stronger: O(nlogn)).

Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlog n).
Jerrum (1995) / Salas and Sokal (1997): k > 2A, tgiau = O(nlogn).

Vigoda (1999): k > 11A/6, then tciau = O(n?).

Better bounds for classes of graphs:

- Large girth

- Planar graphs

- Trees

- Bounded treewidth

- Erd6s-Rényi random graphs
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Path coupling

Bubley and Dyer (1997):
- Define pre-metric (I',w) with V(') = Q«(G) and w: E(T') — [0, 1].
- Let d be the metric induced by (I',w) on Qk(G) using minimum weight
paths.

- Define a coupling (Xt, X{) — (Xet1, X{41) for XeX{ € E(T).
- If there exists @ > 0 such that for every X;X{ € E(I')

E[V(d)] := E[d(Xes1, X{11) — d(Xe, X{)] < —ax

then
tmix = O(a " logn) .
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- Let d be the metric induced by (I',w) on Qk(G) using minimum weight
paths.

- Define a coupling (Xt, X{) — (Xet1, X{41) for XeX{ € E(T).
- If there exists @ > 0 such that for every X;X{ € E(I')

E[V(d)] := E[d(Xes1, X{11) — d(Xe, X{)] < —ax

then
tmix = O(a " logn) .

Obstacle: atypical pairs (X, X{).

Guillem Perarnau Efficient sampling of random colorings 6 /17



Previous results

Conjecture: If k > A + 2, then tgia, = n°Y (stronger: O(nlog n)).
Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlogn).
Jerrum (1995) / Salas and Sokal (1997): k > 2A, tgiau = O(nlog n).
Vigoda (1999): k > 11A/6, then tgiau = O(n?).
Better bounds for restricted classes of graphs:

- Large girth

- Planar graphs

- Trees

- Bounded treewidth

- Erd6s-Rényi random graphs

Guillem Perarnau Efficient sampling of random colorings 7/17



Previous results

Conjecture: If k > A + 2, then tgia, = n°Y (stronger: O(nlog n)).
Hayes and Sinclair (2005): if k = A + 2, then tgiau = Q(nlogn).
Jerrum (1995) / Salas and Sokal (1997): k > 2A, tgiau = O(nlog n).
Vigoda (1999): k > 11A/6, then tgia, = O(n?).
Better bounds for restricted classes of graphs:

- Large girth

- Planar graphs

- Trees

- Bounded treewidth

- Erd6s-Rényi random graphs

Guillem Perarnau Efficient sampling of random colorings 7/17



Breaking the 11/6 barrier

Frieze and Vigoda (2006):

Can Vigoda's approach be pushed below 11A /67
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Breaking the 11/6 barrier

Frieze and Vigoda (2006):

Can Vigoda's approach be pushed below 11A /67

Theorem (Delcourt, P., Postle (2018))]

There exists 7 > 0 such that Glauber dynamics for k-colourings has mixing
time O(n?) provided that k > (11/6 — n)A. (n~ 1.2-107°)
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Breaking the 11/6 barrier

Frieze and Vigoda (2006):

Can Vigoda's approach be pushed below 11A /67

Theorem (Delcourt, P., Postle (2018) / Chen, Moitra (2018))}

There exists 7 > 0 such that Glauber dynamics for k-colourings has mixing
time O(n?) provided that k > (11/6 — n)A. (n~ 1.2-107°, 9.4-107°)
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Breaking the 11/6 barrier

Frieze and Vigoda (2006):

Can Vigoda's approach be pushed below 11A /67

Theorem (Delcourt, P., Postle (2018) / Chen, Moitra (2018))}

There exists 7 > 0 such that Glauber dynamics for k-colourings has mixing
time O(n?) provided that k > (11/6 — n)A. (n~ 1.2-107°, 9.4-107°)

Both proofs also extend to list-colourings (only k > 2A was known).
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Kempe components and Flip dynamics

Kempe component: given o € Qk(G), ue V(G), c € [k]

So(u,c) ={ve V(G): (c(u),c)-alternating path between u and v}
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Kempe components and Flip dynamics

Kempe component: given o € Qk(G), ue V(G), c € [k]

So(u,c) ={ve V(G): (c(u),c)-alternating path between u and v}

Flip dynamics: Markov chain (Y;:) gov-
erned by p = (p1,p2,...) with state
space Q«(G) and transitions defined by

- Choose u varin V(G).

- Choose ¢ uarin [k].

- Let S = S,(u,c) and £ = |S|.
With probability p¢/¢, Yi+1
obtained from Y;: by flipping S;
otherwise, Yiy+1 = 0.
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Kempe components and Flip dynamics

Kempe component: given o € Qk(G), ue V(G), c € [k]

So(u,c) ={ve V(G): (c(u),c)-alternating path between u and v}

Flip dynamics: Markov chain (Y;:) gov-

erned by p = (p1,p2,...) with state ::::::::::::::::
space Q«(G) and transitions defined by : :
- Choose u varin V(G). ® @

- Choose ¢ uarin [k]. : :

- Let S =S,(u,c)and £ =S]. - 4
With probability pe/¢, Yii1 ) o
obtained from Y;: by flipping S; 4 o

. o ]

otherwise, Yi11 = 0. o o

4 4
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Kempe components and Flip dynamics

Kempe component: given o € Qk(G), ue V(G), c € [k]

So(u,c) ={ve V(G): (c(u),c)-alternating path between u and v}

Flip dynamics: Markov chain (Y;:) gov-
erned by p = (p1,p2,...) with state
space Q«(G) and transitions defined by

- Choose u varin V(G).

- Choose ¢ uarin [k].

- Let S = S,(u,c) and £ = |S|.
With probability p¢/¢, Yi+1
obtained from Y;: by flipping S;
otherwise, Yiy+1 = 0.

Also converges to a uniform colouring
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Kempe components and Flip dynamics

Kempe component: given o € Qk(G), ue V(G), c € [k]

So(u,c) ={ve V(G): (c(u),c)-alternating path between u and v}

Flip dynamics: Markov chain (Y;:) gov-

erned by p = (p1,p2,...) with state ::..‘.........::
space Q«(G) and transitions defined by : :
- Choose u varin V(G). ® @

- Choose ¢ uarin [k]. : :

~Let S=S,(u,c) and £ = |S|. H 4
With probability pe/¢, Yii1 ) o
obtained from Y;: by flipping S; : :
otherwise, Yi41 = 0. o ®

4 o

Also converges to a uniform colouring ::::::::::::::::

Mixing time: taip
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Glauber vs. flip dynamics

Glauber dynamics Flip dynamics with p, = ¢
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Glauber vs. flip dynamics

Glauber dynamics Flip dynamics with p, = ¢

- If p1 =1, then flip dynamics embeds Glauber dynamics (thip < tgiau)-
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Glauber vs. flip dynamics

Glauber dynamics Flip dynamics with p, = ¢

0000000000000000 0000000000
0000000000000000 0000000000000

- If p1 =1, then flip dynamics embeds Glauber dynamics (thip < tgiau)-

- Even more, flip dynamics moves even if ¢ appears in N(v) (thip < tgiau)-
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Glauber vs. flip dynamics

Glauber dynamics Flip dynamics with p, = ¢

- If p1 =1, then flip dynamics embeds Glauber dynamics (thip < tgiau)-
- Even more, flip dynamics moves even if ¢ appears in N(v) (thip < tgiau)-
- Assume that py = 0, for £ > £ (no big flips are allowed).
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Glauber dynamics

Flip dynamics with p, = ¢

- If p1 =1, then flip dynamics embeds Glauber dynamics (thip < tgiau)-
- Even more, flip dynamics moves even if ¢ appears in N(v) (thip < tgiau)-
- Assume that py = 0, for £ > £ (no big flips are allowed).

Vigoda (1999): If kK > (1 + €)A, one can simulate each move in flip

dynamics with O(1) moves in Glauber dynamics:

tGlau = O(nlog k - tﬂip)

Guillem Perarnau

Efficient sampling of random colorings

Glauber vs. flip dynamics

10 / 17



Recall: Path coupling

Bubley and Dyer (1997):
- Define pre-metric (I',w) with V(') = Q«(G) and w: E(T') — [0, 1].
- Let d be the metric induced by (I',w) on Qk(G) using minimum weight
paths.

- Define a coupling (Y, Y{) = (Yiy1, Yii1) for Y Y{ € E(T).
- If there exists a > 0 such that for every Y;Y{ € E(I)
]E[V(d)] = ]E[d(ytJrla Yt/+1) - d(yfv Yt/)] < -«

then
tmix = O(a” ' logn) .

Obstacle: atypical pairs (Ys, Y7).
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Bubley and Dyer (1997):
- Define pre-metric (I',w) with V(') = Q«(G) and w: E(T') — [0, 1].
- Let d be the metric induced by (I',w) on Qk(G) using minimum weight
paths.

- Define a coupling (Y, Y{) = (Yiy1, Yii1) for Y Y{ € E(T).
- If there exists a > 0 such that for every Y;Y{ € E(I)
]E[V(d)] = ]E[d(yl”rla Yt/+1) - d(yfv Yt/)] < -,
then
tmix = O(a” ' logn) .
Obstacle: atypical pairs (Ys, Y7).
Ways to overcome it:

- Burn-in method: multi-step analysis, run the chains until we reach a
typical pair (Chen, Moitra).

- Extremal metric: single-step analysis with metric tailored to favour typical
pairs (Delcourt, P., Postle).
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Pre-metric (I',w) and configurations

I: graph on Q(G) where o and 7 are adjacent iff they only differ at a vertex v.
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Pre-metric (I',w) and configurations

I: graph on Q(G) where o and 7 are adjacent iff they only differ at a vertex v.

(o,7) has an r-configuration (ai,...,ar; bi,..., by) for ¢ if
- N(v)no He) ={m,...,w};
- |S-(wi,o(v))| = a; for i € [r];
- |So(wi, 7(v))| = bi for i € [r].

Sr(w,0(v))
3-configuration (2,2, 3;4,1,2)
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Pre-metric (I',w) and configurations

I: graph on Q(G) where o and 7 are adjacent iff they only differ at a vertex v.
(o,7) has an r-configuration (ai,...,ar; bi,..., by) for ¢ if

- N(v)no He) ={m,...,w};

- |S-(wi,o(v))| = a; for i € [r];

- |So(wi, 7(v))| = bi for i € [r].

A configuration is extremal if
- r=1and it is either (2;1) or (1;2);
- r=2and it is either (3,3;1,1) or (1, 1; 3, 3).

Let /3, - be the proportion of vertices w € N(v) such that o(w) = ¢ and the
configuration for ¢ is extremal. For v > 0 sufficiently small,

w(o, 1) :=1=7(1 = Bo,r)
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Pre-metric (I',w) and configurations

I: graph on Q(G) where o and 7 are adjacent iff they only differ at a vertex v.

(o,7) has an r-configuration (ai,...,ar; bi,..., by) for ¢ if
- N(v)no He) ={m,...,w};
- |S-(wi,o(v))| = a; for i € [r];
- |So(wi, 7(v))| = bi for i € [r].

A configuration is extremal if
- r=1and it is either (2;1) or (1;2);
- r=2and it is either (3,3;1,1) or (1, 1; 3, 3).

Let /3, - be the proportion of vertices w € N(v) such that o(w) = ¢ and the
configuration for ¢ is extremal. For v > 0 sufficiently small,

w(o, 1) :=1=7(1 = Bo,r)
We consider the pre-metric (I',w), that extends to a metric d.
d(O’, T) = dH(U> T) - dB(G', T)

where dy is the Hamming distance. If v = 0, then d = dy (Vigoda, 1999).
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

v
o) =@ =@,

ad .~ .

.

N(w) NO O b NO O 5 N)
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Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7.

v
o(v) = 7(v)
-@
N(v) N(v)
(2)
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two.

T(v) =
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Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two.

T(v) =
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Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two.

T(v) =
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two. One can bound the change on dy by

f(al,.. a,;bl,...,br)
= (Z ai — amax)Pa +(Z bi - bmax)Pb + Z (aiqi + blq:/ - mln{q:,q,/}) .

ie[r] i€[r] i€[r] Gi)
® (2
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:

- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two. One can bound the change on dy by

f(al,.. a,;bl,...,b,)
= Z ai — ama>< Pa Z b — max)Pb + Z (aiqi + blq:/ - min{qi7 qll}) .

i€[r] i€[r] i€[r]

- NEUTRAL: otherwise, use identity coupling and dy does not change.
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Vigoda's coupling and change of dy

Given o, T that differ only at v and c € [k]:
- GOOD: If r =0, use identity coupling and d changes by f(J; &) = —1.

- BAD: If r = 1, we couple the S;(v, c) component with the largest of the
small ones, and similarly for 7. We couple the remaining weight
two-by-two. One can bound the change on dy by

f(al,.. a,;bl,...,b,)
= Z aj — amax Pa Z b max)Pb + Z (aiqi + blq,/ - min{qi7 qll}) .

i€[r] i€[r] ie[r]
- NEUTRAL: otherwise, use identity coupling and dy does not change.

Under the Hamming metric d = dn (v = 0), if we have
f(ar,...;ar;b1...,b) < kr—1.

then we get rapid mixing for k > kA + 1

E[V(dnh)] < 1 Z f (configuration for ¢) < —(/@|N(v)| —k)<——=—a.
k o " kn

Efficient sampling of random colorings

Guillem Perarnau



Linear Programming

Minimise: k

subject to:

f(ai,...,ar;b1...,b) <Kkr—1 for every conf.(ay,...,ar b1,..., b)

pr=1
pi — pi+1 <0 fori>1
pi=0 fori>1
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Linear Programming

Minimise:
subject to:
f(ai,...,ar;b1...,b) <Kkr—1 for every conf.(ay,...,ar b1,..., b)
pr=1
pi—pi+1 <0 fori>1
pi=0 fori>1

Number of variables and constraints depends on A.

Relax it to a finite LP, with same solution set.
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Linear Programming

Minimise: k

subject to:
f(ai,...,ar;b1...,b) <Kkr—1 for every conf.(ay,...,ar b1,..., b)
pr=1
pi — pi+1 <0 fori>1
pi=0 fori>1

Number of variables and constraints depends on A.

Relax it to a finite LP, with same solution set.
Constraints for extremal configurations:
f(2l)=p—ps<k-—1
f(3,3;1,1) =2p1 +4ps — pr <2k —1
Since p1 = 1 and p7 > 0, it follows that x > 11/6.
Moreover, if Kk = 11/6, then p3 = 1/6 and p; = 0.
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Flip probabilities and expected change of dy

Vigoda: x = 11/6, pvig = (1 312 1 1

5069 310 310 342 0 optimal solution,

)
f(al,...,a,;bl,...,b,)< %r—le(V(dH)) ki (%A—k) < —
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Flip probabilities and expected change of dy

Vigoda: x = 11/6, pvig = (1 312 1 1

5069 310 310 342 0 optimal solution,

)
f(al,...,a,;bl,...,b,)< %r—le(V(dH)) ki (%A—k) < —

= 11/6 is optimal ...
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,

11 1 11
f(al,...,a,;bl,...,b,) Kr—l ﬁE(V(C/H)) < E (FA—/() < —

r = 11/6 is optimal ... but there exist infinitely many solutions!
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,

11 1 11
f(al,...,a,;bl,...,b,) Kr—l ﬁE(V(C/H)) < E (?A_k) < —o.

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,

11 1 11
f(al,...,a,;bl,...,b,)< Kr—le(V(dH)) < E (?A_k) < —o.

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.

- there are 6 pvig-extremal configurations: (2;1), (3;1), (4;1), (5;1),
(2,2;1,1) and (3,3;1,1).
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,

11 1 11
f(al,...,a,;bl,...,b,)< Kr—le(V(dH)) < E (?A_k) < —a.

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.

- there are 6 pvig-extremal configurations: (2;1), (3;1), (4;1), (5;1),
(2,2;1,1) and (3,3;1,1).

Delcourt, P. , Postle: x =11/6, p* = (1,22 1 47 9. 2 0,0,...).

76167 67 4627 154’ 77’
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,

11 1 11
f(al,...,a,;bl,...,b,)< Kr—lﬁE(V(dH)) < E (?A_k) < —a.

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.

- there are 6 pvig-extremal configurations: (2;1), (3;1), (4;1), (5;1),
(2,2;1,1) and (3,3;1,1).

Delcourt, P. , Postle: x =11/6, p* = (1,22 1 47 9. 2 0,0,...).

8160 5 2630 90 700
- there are only 2 p*-extremal configurations: (2;1) and (3, 3; 1, 1).
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,
11 1 /11
ceyan by b)) < —r — E < —(=A—-k) < —«.
f(al, , a b1 b) 6 r 1= (V(dH)) P ( 6 > 0%

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.

- there are 6 pvig-extremal configurations: (2;1), (3;1), (4;1), (5;1),
(2,2;1,1) and (3,3;1,1).

Delcourt, P. , Postle: x =11/6, p* = (1,22 1 47 9. 2 0,0,...).

8160 5 2630 90 700
- there are only 2 p*-extremal configurations: (2;1) and (3, 3; 1, 1).

Using p*, for each non-extremal r-configuration we have
161

f(al,...,a,;bl,...,b,)<gr—l.
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Flip probabilities and expected change of dy

Vigoda: k = 11/6, pviz = (1.5, %, 2, %, &.0,0,...), optimal solution,
11 1 /11
ceyan by b)) < —r — E < —(=A—-k) < —«.
f(al, , a b1 b) 6 r 1= (V(dH)) P ( 6 > 0%

r = 11/6 is optimal ... but there exist infinitely many solutions!

(a1,...,ar b1,...,b,) is p-extremal if f(a1,...,ar b1,...,by) = %r— 1.

- there are 6 pvig-extremal configurations: (2;1), (3;1), (4;1), (5;1),
(2,2;1,1) and (3,3;1,1).

Delcourt, P. , Postle: x =11/6, p* = (1,22 1 47 9. 2 0,0,...).

8160 5 2630 90 700
- there are only 2 p*-extremal configurations: (2;1) and (3, 3; 1, 1).

Using p*, for each non-extremal r-configuration we have

161
f(ar,...,ar b1,...,br) < gr—l.
Let € = % — % ~ 0.00378. The expected change of dy is
knE(V(dn)) < (%ﬁm + %(1 - ﬁm)) A—k= (% —e(1— ﬁ”)) A—k
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(a7 T) = dH(U7 T) - dB(O', T) 5
e=11/6—161/88 > 0 .
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(a7 T) = dH(U7 T) - dB(O', T) 5
e=11/6—161/88 > 0 .

Choose v « ¢, so dg < dH.
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(a7 T) = dH(U7 T) - dB(O', T) 5
e=11/6—161/88 > 0 .

Choose 7 < €, so dg « dy. Recall that

knE(V(dn)) < (%1 (1 5(,,)) Ak
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(a7 T) = dH(U7 T) - dB(‘L T) 5
e=11/6—161/88 > 0 .

Choose 7 < €, so dg « dy. Recall that

knE(V(dn)) < (% (1 55,)) Ak

- Typical pairs (Ys, Y{) satisfy 8, < 1 (positive fraction of non-extremal
configurations) and we are done.
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(o,7) = du(o,7) — dg(o,7) ,
e=11/6—161/88 > 0.

Choose 7 < €, so dg « dy. Recall that

knE(V(dn)) < (% (1 @,,)) Ak

- Typical pairs (Ys, Y{) satisfy 8, < 1 (positive fraction of non-extremal
configurations) and we are done.

- Atypical pairs (Y;, Y{) satisfy 8o, ~ 1 (almost all configurations are
extremal), so knE(V(dy)) = LA — k.
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that

w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(o,7) = du(o,7) — dg(o,7) ,
e=11/6—161/88 > 0.

Choose 7 < €, so dg « dy. Recall that

knE(V(dyn)) < (%1 —e(1— 5”)> A—k

- Typical pairs (Ys, Y{) satisfy 8, < 1 (positive fraction of non-extremal
configurations) and we are done.

- Atypical pairs (Y;, Y{) satisfy 8o, ~ 1 (almost all configurations are
extremal), so knE(V(dy)) = LA — k.

NEUTRAL moves for dy can turn extremal configurations into
non-extremal;
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Typical and atypical pairs and the expected change of dg

We need to prove that knlE(V(d)) < —a. Recall that
w(oy,r) =1—7(1-Bo,r), Bo,~ fraction neigh. in extremal conf.
d(o,7) = du(o,7) — dg(o,7) ,
e=11/6 —161/88 > 0.

Choose 7 < €, so dg « dy. Recall that

knE(V(dyn)) < (%1 —e(1— 5”)> A—k

- Typical pairs (Ys, Y{) satisfy 8, < 1 (positive fraction of non-extremal
configurations) and we are done.

- Atypical pairs (Y;, Y{) satisfy 8o, ~ 1 (almost all configurations are
extremal), so knE(V(dy)) = LA — k.

NEUTRAL moves for dy can turn extremal configurations into
non-extremal; and this decreases the distance

knE(V(dg)) = Cvfo A,

for some small C > 0, and we are done.
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Conclusions

Conjecture (Folklore)]

If Kk = A + 2, Glauber dynamics for k-colourings of G on n vertices satisfies

talau(€) = n°W (stronger version: O(nlogn)) .
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If Kk = A + 2, Glauber dynamics for k-colourings of G on n vertices satisfies

talau(€) = n°W (stronger version: O(nlogn)) .

Vigoda (1999) : k > 11A/6.
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Conjecture (Folklore)]

If Kk = A + 2, Glauber dynamics for k-colourings of G on n vertices satisfies

talau(€) = n°W (stronger version: O(nlogn)) .

Vigoda (1999) : k > 11A/6.

Delcourt, P., Postle (2018), Chen, Moitra (2018) : k > (11/6 — n)A.
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Conclusions

Conjecture (Folklore)]

If Kk = A + 2, Glauber dynamics for k-colourings of G on n vertices satisfies

talau(€) = n°® (stronger version: O(nlogn)) .

Vigoda (1999) : k > 11A/6.
Delcourt, P., Postle (2018), Chen, Moitra (2018) : k > (11/6 — n)A.

At the moment 1 ~ 10™%, can we increase 1?
- improve analysis in the proof.
- consider almost-extremal configurations.
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taau(€) (stronger version: O(nlogn)) .

Vigoda (1999) : k > 11A/6.
Delcourt, P., Postle (2018), Chen, Moitra (2018) : k > (11/6 — n)A.

At the moment 1 ~ 10™%, can we increase 1?
- improve analysis in the proof.
- consider almost-extremal configurations.

Current methods do not seem to allow a substantial improvement.
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- consider almost-extremal configurations.

Current methods do not seem to allow a substantial improvement.
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Conclusions

Conjecture (FoIhore)]

If Kk = A + 2, Glauber dynamics for k-colourings of G on n vertices satisfies

_ 00

taau(€) (stronger version: O(nlogn)) .

Vigoda (1999) : k > 11A/6.
Delcourt, P., Postle (2018), Chen, Moitra (2018) : k > (11/6 — n)A.

At the moment 1 ~ 10™%, can we increase 1?
- improve analysis in the proof.
- consider almost-extremal configurations.

Current methods do not seem to allow a substantial improvement.

New ideas?

MERCI POUR VOTRE ATTENTION
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