Efficient sampling of random colorings

Guillem Perarnau

Random Graphs and its Application for Complex Networks Université Jean Monnet, Saint Etienne - 4th October, 2018

University of Birmingham, United Kingdom

joint work with Michelle Delcourt and Luke Postle.

G: graph on n vertices and maximum degree Δ

k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex *k*-colourings of *G*.

- G: graph on n vertices and maximum degree Δ
- k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex *k*-colourings of *G*.

Q: What is the complexity of computing $|\Omega_k(G)|$?

- G: graph on n vertices and maximum degree Δ
- k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex *k*-colourings of *G*.

- **Q**: What is the complexity of computing $|\Omega_k(G)|$?
 - Decide if $|\Omega_k(G)| > 0$ is **NP**-complete (Karp, 1972).

- G: graph on n vertices and maximum degree Δ
- k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex *k*-colourings of *G*.

Q: What is the complexity of computing $|\Omega_k(G)|$?

- Decide if $|\Omega_k(G)| > 0$ is **NP**-complete (Karp, 1972).
- $|\Omega_k(G)|$ is exponentially large in *n*.

- G: graph on n vertices and maximum degree Δ
- k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex k-colourings of G.

- **Q**: What is the complexity of computing $|\Omega_k(G)|$?
 - Decide if $|\Omega_k(G)| > 0$ is **NP**-complete (Karp, 1972).
 - $|\Omega_k(G)|$ is exponentially large in *n*.
 - Computing $|\Omega_k(G)|$ is $\sharp \mathbf{P}$ -complete (Valiant, 1979).

- G: graph on n vertices and maximum degree Δ
- k: positive integer, number of colours.

 $\Omega_k(G)$: set of proper vertex k-colourings of G.

Q: What is the complexity of computing $|\Omega_k(G)|$?

- Decide if $|\Omega_k(G)| > 0$ is **NP**-complete (Karp, 1972).
- $|\Omega_k(G)|$ is exponentially large in n.
- Computing $|\Omega_k(G)|$ is $\sharp \mathbf{P}$ -complete (Valiant, 1979).
- **Q**: Is it possible to approximate $|\Omega_k(G)|$ efficiently?

A fully polynomial-time randomised approximation scheme (FPRAS), is a randomised algorithm that runs in polynomial time in *n* and $1/\delta$ whose output is $(1 \pm \delta)|\Omega_k(G)|$ with "high" probability.

Random colourings and Glauber dynamics

A fully polynomial-time almost uniform sampler (FPAUS), is a randomised algorithm that runs in polynomial time in *n* that generates an element of $\Omega_k(G)$ according to a probability distribution that is "close" to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) \Leftrightarrow Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.

A fully polynomial-time almost uniform sampler (FPAUS), is a randomised algorithm that runs in polynomial time in *n* that generates an element of $\Omega_k(G)$ according to a probability distribution that is "close" to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) ⇔ Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.

Glauber dynamics: Markov chain (X_t) with state space $\Omega_k(G)$ and transitions defined by:

- Choose u uar in V(G).
- Choose c uar in [k].

- Let
$$X_{t+1}(v) = X_t(v)$$
, for $v \neq u$.

- If $c \notin X_t(N(u))$ then $X_{t+1}(u) = c$; otherwise $X_{t+1}(u) = X_t(u)$. A fully polynomial-time almost uniform sampler (FPAUS), is a randomised algorithm that runs in polynomial time in *n* that generates an element of $\Omega_k(G)$ according to a probability distribution that is "close" to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) ⇔ Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.

Glauber dynamics: Markov chain (X_t) with state space $\Omega_k(G)$ and transitions defined by:

- Choose u uar in V(G).
- Choose c uar in [k].

- Let
$$X_{t+1}(v) = X_t(v)$$
, for $v \neq u$.

- If $c \notin X_t(N(u))$ then $X_{t+1}(u) = c$; otherwise $X_{t+1}(u) = X_t(u)$. A fully polynomial-time almost uniform sampler (FPAUS), is a randomised algorithm that runs in polynomial time in *n* that generates an element of $\Omega_k(G)$ according to a probability distribution that is "close" to uniform.

Jerrum, Valiant, Vazirani (1986): for colourings

Approximate Counting (FPRAS) ⇔ Approximate Sampling (FPAUS)

Q: Devise algorithm to efficiently generate an (almost) uniform colouring.

Glauber dynamics: Markov chain (X_t) with state space $\Omega_k(G)$ and transitions defined by:

- Choose u uar in V(G).
- Choose c uar in [k].

- Let
$$X_{t+1}(v) = X_t(v)$$
, for $v \neq u$.

- If $c \notin X_t(N(u))$ then $X_{t+1}(u) = c$; otherwise $X_{t+1}(u) = X_t(u)$.

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\min}(\epsilon) := \min \left\{ t : \max_{\sigma \in \Omega} \| \boldsymbol{P}^t(\sigma, .) - \pi \|_{TV} \leqslant \epsilon \right\} .$$

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\min} := \min \left\{ t : \max_{\sigma \in \Omega} \| \boldsymbol{P}^t(\sigma, .) - \pi \|_{TV} \leq 1/4 \right\}$$

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\min} := \min \left\{ t : \max_{\sigma \in \Omega} \| \boldsymbol{P}^t(\sigma, .) - \pi \|_{TV} \leq 1/4 \right\}$$

Denote mixing time of Glauber dynamics by t_{Glau} .

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\min} := \min \left\{ t : \max_{\sigma \in \Omega} \| \boldsymbol{P}^t(\sigma, .) - \pi \|_{TV} \leq 1/4 \right\}$$

Denote mixing time of Glauber dynamics by t_{Glau} .

 t_{Glau} polynomial in *n* for $k \ge \Delta + 2 \implies (X_t)$ gives a FPAUS

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\min} := \min \left\{ t : \max_{\sigma \in \Omega} \| \boldsymbol{P}^t(\sigma, .) - \pi \|_{TV} \leq 1/4 \right\}$$

Denote mixing time of Glauber dynamics by t_{Glau} .

 t_{Glau} polynomial in *n* for $k \ge \Delta + 2 \implies (X_t)$ gives a FPAUS (\Rightarrow FPRAS)

Remarks:

- $k \ge \Delta + 1 \Rightarrow |\Omega_k(G)| > 0$ (greedy algorithm).
- (X_t) is aperiodic, symmetric and reversible.
- $k \ge \Delta + 2 \Rightarrow (X_t)$ irreducible

 $k \ge \Delta + 2 \implies (X_t)$ converges to a uniform random colouring.

Mixing time of MC with transition matrix P and stat. dist π :

$$t_{\mathsf{mix}} := \min\left\{t : \max_{\sigma \in \Omega} \| \mathcal{P}^t(\sigma, .) - \pi\|_{\mathsf{TV}} \leq 1/4\right\}$$

Denote mixing time of Glauber dynamics by t_{Glau} .

 t_{Glau} polynomial in *n* for $k \ge \Delta + 2 \implies (X_t)$ gives a FPAUS (\Rightarrow FPRAS)

Conjecture (Folklore)

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Jerrum (1995) / Salas and Sokal (1997): $k > 2\Delta$, $t_{\text{Glau}} = O(n \log n)$.

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Jerrum (1995) / Salas and Sokal (1997): $k > 2\Delta$, $t_{Glau} = O(n \log n)$.

Vigoda (1999): $k > 11\Delta/6$, then $t_{Glau} = O(n^2)$.

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Jerrum (1995) / Salas and Sokal (1997): $k > 2\Delta$, $t_{Glau} = O(n \log n)$.

Vigoda (1999): $k > 11\Delta/6$, then $t_{Glau} = O(n^2)$.

Better bounds for classes of graphs:

- Large girth
- Planar graphs
- Trees
- Bounded treewidth
- Erdős-Rényi random graphs

Bubley and Dyer (1997):

- Define pre-metric (Γ, ω) with $V(\Gamma) = \Omega_k(G)$ and $\omega : E(\Gamma) \rightarrow [0, 1]$.
- Let *d* be the metric induced by (Γ, ω) on $\Omega_k(G)$ using minimum weight paths.
- Define a coupling $(X_t, X'_t) \rightarrow (X_{t+1}, X'_{t+1})$ for $X_t X'_t \in E(\Gamma)$.
- If there exists $\alpha > 0$ such that for every $X_t X'_t \in E(\Gamma)$

$$\mathbb{E}[\nabla(d)] := \mathbb{E}[d(X_{t+1}, X_{t+1}') - d(X_t, X_t')] < -\alpha ,$$

then

$$t_{\rm mix} = O(\alpha^{-1} \log n) \; .$$

Bubley and Dyer (1997):

- Define pre-metric (Γ, ω) with $V(\Gamma) = \Omega_k(G)$ and $\omega : E(\Gamma) \rightarrow [0, 1]$.
- Let *d* be the metric induced by (Γ, ω) on $\Omega_k(G)$ using minimum weight paths.
- Define a coupling $(X_t, X'_t) \rightarrow (X_{t+1}, X'_{t+1})$ for $X_t X'_t \in E(\Gamma)$.
- If there exists $\alpha > 0$ such that for every $X_t X'_t \in E(\Gamma)$

$$\mathbb{E}[\nabla(d)] := \mathbb{E}[d(X_{t+1}, X_{t+1}') - d(X_t, X_t')] < -\alpha ,$$

then

$$t_{\rm mix} = O(\alpha^{-1} \log n) \; .$$

Obstacle: atypical pairs (X_t, X'_t) .

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Jerrum (1995) / Salas and Sokal (1997): $k > 2\Delta$, $t_{\text{Glau}} = O(n \log n)$.

Vigoda (1999): $k > 11\Delta/6$, then $t_{Glau} = O(n^2)$.

Better bounds for restricted classes of graphs:

- Large girth
- Planar graphs
- Trees
- Bounded treewidth
- Erdős-Rényi random graphs

Hayes and Sinclair (2005): if $k \ge \Delta + 2$, then $t_{\text{Glau}} = \Omega(n \log n)$.

Jerrum (1995) / Salas and Sokal (1997): $k > 2\Delta$, $t_{Glau} = O(n \log n)$.

Vigoda (1999): $k > 11\Delta/6$, then $t_{Glau} = O(n^2)$.

Better bounds for restricted classes of graphs:

- Large girth
- Planar graphs
- Trees
- Bounded treewidth
- Erdős-Rényi random graphs

Can Vigoda's approach be pushed below $11\Delta/6?$

Can Vigoda's approach be pushed below $11\Delta/6?$

Theorem (Delcourt, P., Postle (2018))

There exists $\eta > 0$ such that Glauber dynamics for k-colourings has mixing time $O(n^2)$ provided that $k \ge (11/6 - \eta)\Delta$. $(\eta \approx 1.2 \cdot 10^{-5})$

Can Vigoda's approach be pushed below $11\Delta/6?$

Theorem (Delcourt, P., Postle (2018) / Chen, Moitra (2018))

There exists $\eta > 0$ such that Glauber dynamics for k-colourings has mixing time $O(n^2)$ provided that $k \ge (11/6 - \eta)\Delta$. $(\eta \approx 1.2 \cdot 10^{-5}, 9.4 \cdot 10^{-5})$

Can Vigoda's approach be pushed below $11\Delta/6?$

Theorem (Delcourt, P., Postle (2018) / Chen, Moitra (2018))

There exists $\eta > 0$ such that Glauber dynamics for k-colourings has mixing time $O(n^2)$ provided that $k \ge (11/6 - \eta)\Delta$. ($\eta \approx 1.2 \cdot 10^{-5}$, $9.4 \cdot 10^{-5}$)

Both proofs also extend to list-colourings (only $k \ge 2\Delta$ was known).

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.
$S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

Flip dynamics: Markov chain (Y_t) governed by $\mathbf{p} = (p_1, p_2, ...)$ with state space $\Omega_k(G)$ and transitions defined by

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

Also converges to a uniform colouring

 $S_{\sigma}(u, c) = \{v \in V(G) : (\sigma(u), c) \text{-alternating path between } u \text{ and } v\}$

Flip dynamics: Markov chain (Y_t) governed by $\mathbf{p} = (p_1, p_2, ...)$ with state space $\Omega_k(G)$ and transitions defined by

- Choose u uar in V(G).
- Choose c uar in [k].
- Let $S = S_{\sigma}(u, c)$ and $\ell = |S|$. With probability p_{ℓ}/ℓ , Y_{t+1} obtained from Y_t by flipping S; otherwise, $Y_{t+1} = \sigma$.

Also converges to a uniform colouring

Mixing time: t_{flip}

Flip dynamics with $p_\ell = \ell$

Flip dynamics with $p_\ell = \ell$

Flip dynamics with $p_\ell = \ell$

Flip dynamics with $p_{\ell} = \ell$

- If $p_1 = 1$, then flip dynamics embeds Glauber dynamics ($t_{\text{flip}} \leq t_{\text{Glau}}$).

Flip dynamics with $p_{\ell} = \ell$

- If $p_1 = 1$, then flip dynamics embeds Glauber dynamics ($t_{flip} \leq t_{Glau}$).
- Even more, flip dynamics moves even if c appears in N(v) ($t_{\text{flip}} \ll t_{\text{Glau}}$).

Flip dynamics with $p_{\ell} = \ell$

- If $p_1 = 1$, then flip dynamics embeds Glauber dynamics ($t_{flip} \leq t_{Glau}$).
- Even more, flip dynamics moves even if c appears in N(v) ($t_{flip} \ll t_{Glau}$).
- Assume that $p_{\ell} = 0$, for $\ell \ge \ell_0$ (no big flips are allowed).

Flip dynamics with $p_{\ell} = \ell$

- If $p_1 = 1$, then flip dynamics embeds Glauber dynamics ($t_{\text{flip}} \leq t_{\text{Glau}}$).
- Even more, flip dynamics moves even if c appears in N(v) ($t_{\text{flip}} \ll t_{\text{Glau}}$).
- Assume that $p_{\ell} = 0$, for $\ell \ge \ell_0$ (no big flips are allowed).
- Vigoda (1999): If $k > (1 + \epsilon)\Delta$, one can simulate each move in flip dynamics with O(1) moves in Glauber dynamics:

$$t_{\mathsf{Glau}} = O(n \log k \cdot t_{\mathsf{flip}})$$

Recall: Path coupling

Bubley and Dyer (1997):

- Define pre-metric (Γ, ω) with $V(\Gamma) = \Omega_k(G)$ and $\omega : E(\Gamma) \rightarrow [0, 1]$.
- Let *d* be the metric induced by (Γ, ω) on $\Omega_k(G)$ using minimum weight paths.
- Define a coupling $(Y_t, Y'_t) \rightarrow (Y_{t+1}, Y'_{t+1})$ for $Y_t Y'_t \in E(\Gamma)$.
- If there exists $\alpha > 0$ such that for every $Y_t Y'_t \in E(\Gamma)$

$$\mathbb{E}[\nabla(d)] := \mathbb{E}[d(Y_{t+1}, Y'_{t+1}) - d(Y_t, Y'_t)] < -\alpha ,$$

then

$$t_{\mathsf{mix}} = O(\alpha^{-1} \log n)$$
 .

Obstacle: atypical pairs (Y_t, Y'_t) .

Bubley and Dyer (1997):

- Define pre-metric (Γ, ω) with $V(\Gamma) = \Omega_k(G)$ and $\omega : E(\Gamma) \rightarrow [0, 1]$.
- Let *d* be the metric induced by (Γ, ω) on $\Omega_k(G)$ using minimum weight paths.
- Define a coupling $(Y_t, Y'_t) \rightarrow (Y_{t+1}, Y'_{t+1})$ for $Y_t Y'_t \in E(\Gamma)$.
- If there exists $\alpha > 0$ such that for every $Y_t Y'_t \in E(\Gamma)$

$$\mathbb{E}[\nabla(d)] := \mathbb{E}[d(Y_{t+1}, Y'_{t+1}) - d(Y_t, Y'_t)] < -\alpha ,$$

then

$$t_{\rm mix} = O(\alpha^{-1} \log n) \; .$$

Obstacle: atypical pairs (Y_t, Y'_t) .

Ways to overcome it:

- Burn-in method: multi-step analysis, run the chains until we reach a typical pair (Chen, Moitra).
- *Extremal metric*: single-step analysis with metric tailored to favour typical pairs (Delcourt, P., Postle).

Γ: graph on $\Omega_k(G)$ where σ and τ are adjacent iff they only differ at a vertex v.

Γ: graph on $\Omega_k(G)$ where σ and τ are adjacent iff they only differ at a vertex v.

 (σ, τ) has an *r*-configuration $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ for *c* if

-
$$N(v) \cap \sigma^{-1}(c) = \{w_1, \ldots, w_r\};$$

$$- |S_{\tau}(w_i, \sigma(v))| = a_i \text{ for } i \in [r];$$

-
$$|S_{\sigma}(w_i, \tau(v))| = b_i$$
 for $i \in [r]$.

3-configuration (2, 2, 3; 4, 1, 2)

- Γ: graph on $\Omega_k(G)$ where σ and τ are adjacent iff they only differ at a vertex v.
- (σ, τ) has an *r*-configuration $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ for *c* if
 - $N(v) \cap \sigma^{-1}(c) = \{w_1, \ldots, w_r\};$
 - $|S_{\tau}(w_i, \sigma(v))| = a_i$ for $i \in [r]$;
 - $|S_{\sigma}(w_i, \tau(v))| = b_i$ for $i \in [r]$.

A configuration is extremal if

- r = 1 and it is either (2; 1) or (1; 2);
- r = 2 and it is either (3, 3; 1, 1) or (1, 1; 3, 3).

Let $\beta_{\sigma,\tau}$ be the proportion of vertices $w \in N(v)$ such that $\sigma(w) = c$ and the configuration for c is extremal. For $\gamma > 0$ sufficiently small,

$$\omega(\sigma, au) := 1 - \gamma(1 - eta_{\sigma, au})$$

- Γ: graph on $\Omega_k(G)$ where σ and τ are adjacent iff they only differ at a vertex v.
- (σ, τ) has an *r*-configuration $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ for *c* if

-
$$N(v) \cap \sigma^{-1}(c) = \{w_1, \ldots, w_r\};$$

-
$$|S_{\tau}(w_i, \sigma(v))| = a_i$$
 for $i \in [r]$;

- $|S_{\sigma}(w_i, \tau(v))| = b_i$ for $i \in [r]$.

A configuration is extremal if

- r = 1 and it is either (2; 1) or (1; 2);
- r = 2 and it is either (3, 3; 1, 1) or (1, 1; 3, 3).

Let $\beta_{\sigma,\tau}$ be the proportion of vertices $w \in N(v)$ such that $\sigma(w) = c$ and the configuration for c is extremal. For $\gamma > 0$ sufficiently small,

$$\omega(\sigma,\tau) := 1 - \gamma(1 - \beta_{\sigma,\tau})$$

We consider the pre-metric (Γ, ω) , that extends to a metric *d*.

$$d(\sigma,\tau) = d_H(\sigma,\tau) - d_B(\sigma,\tau)$$

where d_H is the Hamming distance. If $\gamma = 0$, then $d = d_H$ (Vigoda, 1999).

Given σ, τ that differ only at v and $c \in [k]$: - **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.

Given σ, τ that differ only at v and $c \in [k]$:

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- BAD: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ .

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two.

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two.

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two.

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two. One can bound the change on d_H by

$$f(a_{1},...,a_{r};b_{1},...,b_{r}) = \underbrace{(\sum_{i\in[r]}a_{i}-a_{\max})p_{a}}_{(1)} + \underbrace{(\sum_{i\in[r]}b_{i}-b_{\max})p_{b}}_{(2)} + \sum_{i\in[r]}\underbrace{(a_{i}q_{i}+b_{i}q'_{i}-\min\{q_{i},q'_{i}\})}_{(3.i)}$$

Given σ, τ that differ only at v and $c \in [k]$:

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two. One can bound the change on d_H by

$$f(a_1, \dots, a_r; b_1, \dots, b_r) = (\sum_{i \in [r]} a_i - a_{\max}) p_a + (\sum_{i \in [r]} b_i - b_{\max}) p_b + \sum_{i \in [r]} (a_i q_i + b_i q'_i - \min\{q_i, q'_i\}) .$$

- **NEUTRAL**: otherwise, use identity coupling and d_H does not change.

Given σ, τ that differ only at v and $c \in [k]$:

- **GOOD**: If r = 0, use identity coupling and d_H changes by $f(\emptyset; \emptyset) = -1$.
- **BAD**: If $r \ge 1$, we couple the $S_{\sigma}(v, c)$ component with the largest of the small ones, and similarly for τ . We couple the remaining weight two-by-two. One can bound the change on d_H by

$$f(a_1, \dots, a_r; b_1, \dots, b_r) = (\sum_{i \in [r]} a_i - a_{\max}) p_a + (\sum_{i \in [r]} b_i - b_{\max}) p_b + \sum_{i \in [r]} (a_i q_i + b_i q'_i - \min\{q_i, q'_i\}) .$$

- **NEUTRAL**: otherwise, use identity coupling and d_H does not change.

Under the Hamming metric $d = d_H$ ($\gamma = 0$), if we have

$$f(a_1,\ldots,a_r;b_1\ldots,b_r)\leqslant \kappa r-1$$
.

then we get rapid mixing for $k \geqslant \kappa \Delta + 1$

$$\mathbb{E}[\nabla(d_{H})] \leq \frac{1}{kn} \sum_{c \in [k]} f(\text{configuration for } c) \leq \frac{1}{kn} (\kappa |N(v)| - k) < -\frac{1}{kn} =: -\alpha$$

Guillem Perarnau

Linear Programming

Minimise: κ subject to: $f(a_1, \dots, a_r; b_1 \dots, b_r) \leq \kappa r - 1$ for every conf. $(a_1, \dots, a_r; b_1, \dots, b_r)$ $p_1 = 1$ $p_i - p_{i+1} \leq 0$ for $i \geq 1$ $p_i \geq 0$ for $i \geq 1$ Minimise: κ subject to: $f(a_1, \dots, a_r; b_1 \dots, b_r) \leq \kappa r - 1$ for every conf. $(a_1, \dots, a_r; b_1, \dots, b_r)$ $p_1 = 1$ $p_i - p_{i+1} \leq 0$ for $i \geq 1$ $p_i \geq 0$ for $i \geq 1$

Number of variables and constraints depends on Δ .

Relax it to a finite LP, with same solution set.

Minimise: κ subject to: $f(a_1, \dots, a_r; b_1 \dots, b_r) \leq \kappa r - 1$ for every conf. $(a_1, \dots, a_r; b_1, \dots, b_r)$ $p_1 = 1$ $p_i - p_{i+1} \leq 0$ for $i \geq 1$ $p_i \geq 0$ for $i \geq 1$

Number of variables and constraints depends on Δ . Relax it to a finite LP, with same solution set.

Constraints for extremal configurations:

 $f(2; 1) = p_1 - p_3 \leqslant \kappa - 1$ $f(3, 3; 1, 1) = 2p_1 + 4p_3 - p_7 \leqslant 2\kappa - 1$

Since $p_1 = 1$ and $p_7 \ge 0$, it follows that $\kappa \ge 11/6$.

Moreover, if $\kappa = 11/6$, then $p_3 = 1/6$ and $p_7 = 0$.

Guillem Perarnau

Vigoda: $\kappa = 11/6$, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leqslant \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leqslant -\alpha$$
.

Vigoda: $\kappa = 11/6$, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leqslant \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leqslant -\alpha$$
.

 $\kappa = 11/6$ is optimal \ldots

Vigoda: $\kappa = 11/6$, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leqslant \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leqslant -\alpha$$

 $\kappa = 11/6$ is optimal ... but there exist infinitely many solutions!

Vigoda: $\kappa = 11/6$, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leqslant \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leqslant -\alpha$$

 $\kappa = 11/6$ is optimal . . . but there exist infinitely many solutions!

 $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ is p-extremal if $f(a_1, \ldots, a_r; b_1, \ldots, b_r) = \frac{11}{6}r - 1$.
Flip probabilities and expected change of d_H

Vigoda: $\kappa = 11/6$, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leq \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leq \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leq -\alpha$$

 $\kappa=11/6$ is optimal \ldots but there exist infinitely many solutions!

 $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ is **p**-extremal if $f(a_1, \ldots, a_r; b_1, \ldots, b_r) = \frac{11}{6}r - 1$.

- there are 6 p_{Vig} -extremal configurations: (2; 1), (3; 1), (4; 1), (5; 1), (2, 2; 1, 1) and (3, 3; 1, 1).

Flip probabilities and expected change of d_H

Vigoda:
$$\kappa = 11/6$$
, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, ...)$, optimal solution,
 $f(a_1, ..., a_r; b_1, ..., b_r) \leq \frac{11}{6}r - 1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leq \frac{1}{kn} \left(\frac{11}{6}\Delta - k\right) \leq -\alpha$.
 $\kappa = 11/6$ is optimal ... but there exist infinitely many solutions!
 $(a_1, ..., a_r; b_1, ..., b_r)$ is **p**-extremal if $f(a_1, ..., a_r; b_1, ..., b_r) = \frac{11}{6}r - 1$.
- there are 6 \mathbf{p}_{Vig} -extremal configurations: (2; 1), (3; 1), (4; 1), (5; 1), (2, 2; 1, 1) and (3, 3; 1, 1).

Delcourt, P., **Postle**: $\kappa = 11/6$, $\mathbf{p}^* = \left(1, \frac{185}{616}, \frac{1}{6}, \frac{47}{462}, \frac{9}{154}, \frac{2}{77}, 0, 0, \ldots\right)$.

Vigoda:
$$\kappa = 11/6$$
, $\mathbf{p}_{Vig} = \left(1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots\right)$, optimal solution,

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leq \frac{11}{6}r-1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leq \frac{1}{kn}\left(\frac{11}{6}\Delta-k\right) \leq -\alpha$$

 $\kappa=11/6$ is optimal \ldots but there exist infinitely many solutions!

 $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ is **p**-extremal if $f(a_1, \ldots, a_r; b_1, \ldots, b_r) = \frac{11}{6}r - 1$.

- there are 6 $p_{\rm Vig}\text{-extremal configurations:}$ (2; 1), (3; 1), (4; 1), (5; 1), (2, 2; 1, 1) and (3, 3; 1, 1).

Delcourt, P., **Postle:** $\kappa = 11/6$, $\mathbf{p}^* = (1, \frac{185}{616}, \frac{1}{6}, \frac{47}{462}, \frac{9}{154}, \frac{2}{77}, 0, 0, \dots)$.

- there are only 2 $\boldsymbol{p}^{\boldsymbol{*}}\text{-extremal configurations:}$ (2;1) and (3,3;1,1).

Vigoda:
$$\kappa = 11/6$$
, $\mathbf{p}_{Vig} = (1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, ...)$, optimal solution,
 $f(a_1, ..., a_r; b_1, ..., b_r) \leq \frac{11}{6}r - 1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leq \frac{1}{kn} \left(\frac{11}{6}\Delta - k\right) \leq -\alpha$.

 $\kappa=11/6$ is optimal \ldots but there exist infinitely many solutions!

 $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ is **p**-extremal if $f(a_1, \ldots, a_r; b_1, \ldots, b_r) = \frac{11}{6}r - 1$.

- there are 6 $p_{\rm Vig}\text{-extremal configurations:}$ (2; 1), (3; 1), (4; 1), (5; 1), (2, 2; 1, 1) and (3, 3; 1, 1).

Delcourt, P., **Postle**: $\kappa = 11/6$, $\mathbf{p}^* = \left(1, \frac{185}{616}, \frac{1}{6}, \frac{47}{462}, \frac{9}{154}, \frac{2}{77}, 0, 0, \ldots\right)$.

- there are only 2 $\boldsymbol{p}^{*}\text{-extremal configurations:}\ (2;1)$ and (3,3;1,1).

Using p^* , for each non-extremal *r*-configuration we have

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{161}{88}r-1$$
.

Vigoda:
$$\kappa = 11/6$$
, $\mathbf{p}_{\text{Vig}} = \left(1, \frac{13}{42}, \frac{1}{6}, \frac{2}{21}, \frac{1}{21}, \frac{1}{84}, 0, 0, \dots\right)$, optimal solution,
 $f(\mathbf{a}_1, \dots, \mathbf{a}_r; \mathbf{b}_1, \dots, \mathbf{b}_r) \leqslant \frac{11}{6}r - 1 \Rightarrow \mathbb{E}(\nabla(d_H)) \leqslant \frac{1}{kn} \left(\frac{11}{6}\Delta - k\right) \leqslant -\alpha$.

 $\kappa=11/6$ is optimal \ldots but there exist infinitely many solutions!

 $(a_1, \ldots, a_r; b_1, \ldots, b_r)$ is **p**-extremal if $f(a_1, \ldots, a_r; b_1, \ldots, b_r) = \frac{11}{6}r - 1$.

- there are 6 $p_{\rm Vig}\text{-extremal configurations:}$ (2; 1), (3; 1), (4; 1), (5; 1), (2, 2; 1, 1) and (3, 3; 1, 1).

Delcourt, P., **Postle**: $\kappa = 11/6$, $\mathbf{p}^* = \left(1, \frac{185}{616}, \frac{1}{6}, \frac{47}{462}, \frac{9}{154}, \frac{2}{77}, 0, 0, \ldots\right)$.

- there are only 2 $\boldsymbol{p}^{\boldsymbol{*}}\text{-extremal configurations:}~(2;1)$ and (3,3;1,1).

Using p^* , for each non-extremal *r*-configuration we have

$$f(a_1,\ldots,a_r;b_1,\ldots,b_r) \leqslant \frac{161}{88}r-1$$
.

Let $\epsilon = \frac{11}{6} - \frac{161}{88} \approx 0.00378$. The expected change of d_H is $kn \mathbb{E}(\nabla(d_H)) \leqslant \left(\frac{11}{6}\beta_{\sigma,\tau} + \frac{161}{88}(1 - \beta_{\sigma,\tau})\right)\Delta - k = \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right)\Delta - k$

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_{H}(\sigma,\tau) - d_{B}(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_{H}(\sigma,\tau) - d_{B}(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$.

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_H(\sigma,\tau) - d_B(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$. Recall that

$$kn \mathbb{E}(\nabla(d_H)) \leq \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right) \Delta - k$$

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_H(\sigma,\tau) - d_B(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$. Recall that

$$kn \mathbb{E}(\nabla(d_H)) \leqslant \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right) \Delta - k$$

- Typical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} < 1$ (positive fraction of non-extremal configurations) and we are done.

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_H(\sigma,\tau) - d_B(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$. Recall that

$$kn \mathbb{E}(\nabla(d_H)) \leqslant \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right) \Delta - k$$

- Typical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} < 1$ (positive fraction of non-extremal configurations) and we are done.
- Atypical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} \approx 1$ (almost all configurations are extremal), so $kn \mathbb{E}(\nabla(d_H)) = \frac{11}{6}\Delta k$.

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_H(\sigma,\tau) - d_B(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$. Recall that

$$kn \mathbb{E}(\nabla(d_H)) \leqslant \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right) \Delta - k$$

- Typical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} < 1$ (positive fraction of non-extremal configurations) and we are done.

- Atypical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} \approx 1$ (almost all configurations are extremal), so $kn \mathbb{E}(\nabla(d_H)) = \frac{11}{6}\Delta - k$.

NEUTRAL moves for d_H can turn extremal configurations into non-extremal;

We need to prove that $kn \mathbb{E}(\nabla(d)) \leq -\alpha$. Recall that

$$\begin{split} &\omega(\sigma,\tau) = 1 - \gamma(1 - \beta_{\sigma,\tau}) , \qquad \beta_{\sigma,\tau} \text{ fraction neigh. in extremal conf.} \\ &d(\sigma,\tau) = d_{H}(\sigma,\tau) - d_{B}(\sigma,\tau) , \\ &\epsilon = 11/6 - 161/88 > 0 . \end{split}$$

Choose $\gamma \ll \epsilon$, so $d_B \ll d_H$. Recall that

$$kn \mathbb{E}(\nabla(d_H)) \leqslant \left(\frac{11}{6} - \epsilon(1 - \beta_{\sigma,\tau})\right) \Delta - k$$

- Typical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} < 1$ (positive fraction of non-extremal configurations) and we are done.
- Atypical pairs (Y_t, Y'_t) satisfy $\beta_{\sigma,\tau} \approx 1$ (almost all configurations are extremal), so $kn \mathbb{E}(\nabla(d_H)) = \frac{11}{6}\Delta k$.

NEUTRAL moves for d_H can turn extremal configurations into non-extremal; and this decreases the distance

$$kn \mathbb{E}(\nabla(d_B)) \geq C\gamma \beta_{\sigma,\tau} \Delta ,$$

for some small C > 0, and we are done.

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

Delcourt, **P.**, **Postle (2018)**, **Chen**, **Moitra (2018)** : $k \ge (11/6 - \eta)\Delta$.

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

Delcourt, **P.**, **Postle (2018)**, **Chen**, **Moitra (2018)** : $k \ge (11/6 - \eta)\Delta$.

At the moment $\eta \approx 10^{-4}$, can we increase η ?

- improve analysis in the proof.
- consider *almost-extremal* configurations.

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

Delcourt, **P.**, **Postle (2018)**, **Chen**, **Moitra (2018)** : $k \ge (11/6 - \eta)\Delta$.

At the moment $\eta \approx 10^{-4}$, can we increase η ?

- improve analysis in the proof.
- consider *almost-extremal* configurations.

Current methods do not seem to allow a substantial improvement.

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

Delcourt, **P.**, **Postle (2018)**, **Chen**, **Moitra (2018)** : $k \ge (11/6 - \eta)\Delta$.

At the moment $\eta \approx 10^{-4}$, can we increase η ?

- improve analysis in the proof.
- consider *almost-extremal* configurations.

Current methods do not seem to allow a substantial improvement.

New ideas?

If $k \ge \Delta + 2$, Glauber dynamics for k-colourings of G on n vertices satisfies $t_{\text{Glau}}(\epsilon) = n^{O(1)}$ (stronger version: $O(n \log n)$).

Vigoda (1999) : $k \ge 11\Delta/6$.

Delcourt, **P.**, **Postle (2018)**, **Chen**, **Moitra (2018)** : $k \ge (11/6 - \eta)\Delta$.

At the moment $\eta \approx 10^{-4}$, can we increase η ?

- improve analysis in the proof.
- consider *almost-extremal* configurations.

Current methods do not seem to allow a substantial improvement.

New ideas?

MERCI POUR VOTRE ATTENTION