


Poisson-Voronoi tessellation in R”

» P, homogeneous Poisson point process in R” of intensity A

» For every nucleus x € P, associated cell

COaPr) ={y eR": ly = x| < [ly = x| Vx" € Px}



Typical Poisson-Voronoi cell

» Typical cell C chosen uniformly among all cells

E(f(C)) := lim — > F(C(x,Py)) as.

" xePANBE" (0,r)

E(f(C)) := W ( > F(C(x,Py) ),BEB(R”)

xEPA\NB

for every translation-invariant functional f

» Theorem (Slivnyak) C D C(o,PyU{o})




Mecke's formula

» For any ¢ > 1 and any non-negative measurable function f,

E( T f({xl,...,Xg},PA)>

{x1,...,x¢ }C P
)\K

=0 E(f({xl, ... ,Xg},P)\ @] {Xl, ... ,Xg}))dxl ...dxp

» Characterization of the Poisson point process



Two mean calculations in R?

Mean area

E(vol®)(C)) = /

oo 1
P(x € C(o, PAU{o})dx = 27T/ e M rdr = =
R2 0 A

Mean number of vertices

N(-) := number of vertices, B(x,y,z) := circumscribed disk of the triangle xyz

ENE@)=E > Lpoms)nr=0}

{x1,x2}CPx
A2
= 7 ]P)(B(O,X:[,XQ) NPy = @)dxldxz
2 2
- )\7 / ef’\vc’lm )(B(o’xl’XZ))dndxz

:477)\2/e7’\7”2r3dr// sin(ﬁ)sin(@ﬂsin(u)|d91d92
(07277)2 2 2 2

=6



Poisson-Voronoi tessellation on a Riemannian manifold

Mean asymptotics for the number of vertices of a Voronoi cell

Limit theorems for the empirical mean of the number of vertices

Joint work with
Aurélie Chapron (Paris Nanterre) & Nathanaél Enriquez (Paris-Sud)
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Model

© R. Kunze (1985)

» M Riemannian manifold of dimension n endowed with the
distance d™) and the volume measure vol(™)

» P, Poisson point process in M of intensity measure Avol(M)

» Voronoi cell associated with x € Py
CM(x,Py) ={y € M: d™M(x,y) < dM(x', y) vx' € Py}
Aim Study the mean geometrical characteristics of

C>(<M>)\ = CM)(xg, PA U {x0}), 0 € M fixed



Context

» Influence of the local geometry of M around xg on the
geometry of C(M)(xg, Py U {xo})

~» Need to do estimations at high intensity

» Conversely, information provided by the tessellation on the
geometry of M, both local (curvatures at xp) and global
(Gauss-Bonnet)

~» Need to show limit theorems in order to do a statistical
estimation



Previous works

Sk Hi
2-sphere of radius 1/k hyperbolic plane of curvature —k?

@© J. Diaz-Polo & I. Garay (2014) © |. Benjamini, E. Paquette & J. Pfeffer (2014)



Previous works

S2 M
2-sphere of radius 1/k hyperbolic plane of curvature —k?
Mean area Mean area
2 S2 1 4w n 2 1
E(vol ) (c)))) = 5 (1 e ) E(vol #) (%)) = 5
Mean number of vertices Mean number of vertices
(87) 2 3k2
B (NVER)) B (M) =6+ 2.
’ TA
=6 % + e % (6 + 3—k2
= ﬂ-)\ 71')\ Y. Isokawa (2000)

R. E. Miles (1971)



Main result

General assumptions on M: sectional curvatures bounded, global injectivity radius...

M
Sci0 ) .= scalar curvature of M at xo

1 1
E(N(Cg\,ﬂ/\))) N en— dp SCS(Q/I) — +o (E)

—00 )\n

where e, = E(N(C®") (0, Py U{0}))) and d, are explicit.

M
Bl 5 4+ o ()



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

(M) = % /M 5™ duolM)(x)



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

xX(M)=F—E+V

by Euler’'s formula applied to the Poisson-Voronoi graph
F:= # faces, E:= # edges, V:= # vertices



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

X(M)=F—E+V



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

x(M)=F -2V



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

x(M) = xvolM(M) — ZE(V)



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

X(M) = avol™ (M (Z N(C )

XEP\



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

X(M) = Aol M (M) — Q/E(N(ci_“j)))dvoﬂm(x)



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

(M) = Avol M (M) — % / EWN(C))dvol ™) (x)

(M) ,
6— —% +o (X

_




Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

(M) = Aol ™ (M) = Avol M (M) + 4i /sc(x“”)voW)(x) +o(1)
ﬂ- .



Probabilistic proof of the Gauss-Bonnet theorem

M 2-dimensional compact manifold, x(M):= Euler characteristic of M

(M) = % / Sc™) dvol M) (x)



Main result

General assumptions on M: sectional curvatures bounded, global injectivity radius...

Sc%w) := scalar curvature of M at xg
ENCM) = en—dpsc L yo( L
X07A . n n X0 )\% )\%

where e, = E(N(C®) (o, Py U {0}))) and d, are explicit.



Sketch of proof: preliminary calculation

EWN (M)

0,

=E > > lpween
{X17...,Xn}C'P/\ B circumball of X0y--+sXn
An

nl M) (xp,€)n

P(circumea (X, - - - » Xn) N Px = 0)dvol™M)(x1) .. . dvol™)(x,,)
eﬂWOl(M)(Ci“”mBa“(XO""’X"))dvol(M)(x1) ...dvolM)(x,)

n! B(M)(Xo,s)”

Aim  Estimates when xq,...,x, — xg of
Vol M) (Gireumbail(x0, - - ., x7))  and  dvol™)(x) ... dvolM)(x,)

before applying Laplace's method



Sketch of proof: change of variables

r \\
M ““; expy, (ru)

Exponential map

For each unit-vector u € T, M, 7 : r — exp, (ru) is the unique
geodesic emanating from xp with speed 1 and 7/(0) = wu.

Change of variables x; = exp rui), i=1,....n

expy, (rup) (



Sketch of proof: asymptotics for the integrand

» Expansion of the Jacobian: Blaschke-Petkantschin formula

dvol™)(x1) ... dvolM)(x,) = jdrdvol(Sn_l)(uo) e dvoI(Sn_l)(un)7

M

n - (M),
J = nlA(uo, . .., up) (r”21 _ Lizo R:,)CXO () rr o(r”2+l)>

Ric(xg/’)(u,-):: Ricci curvature at xg in direction uj, A(uo, .. ., up):= vol®)(Conv(ug, . . ., un))

» Volume of small balls

Theorem (Bertrand-Diguet-Puiseux)

volM (BM) (x4, 1)) = vol ®)(BE) (o, r)) (1 - S:XO r? 4+ o(r2)>



Sketch of proof: expansion of the Jacobian

» Each partial derivative is a Jacobi field J along a geodesic
which satisfies both the Jacobi equation

J" =Ry (' (1), J(£)Y (¢)
and the Rauch comparison theorem

(M) /
el = 0 — DO 5

Ro()(++) := curvature tensor at 7(t), Kf/?g;(-, -) := sectional curvature at (0)

» Expansion of each entry of the Jacobian matrix and careful
calculation of the determinant



Further results

> Density of vertices in a fixed direction
» Same quantities for sectional tessellations

» Exact formulae in the case of the constant curvature
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Motivation

Aim Use the knowledge of the Poisson-Voronoi graph to recover
the curvature at xg

> Replace E(V(CM)

X0,

M
N§ )= erzs’(xo,kﬂ)mpA N(CM(x,Py)), 0<p<1/n

)) with an empirical mean around xp

» Show expectation, variance asymptotics and a CLT for N/(\M)

» Deduce the construction of an estimator of SC%VI) which is

asymptotically unbiased, consistent and normal.



N(M)

Mean asymptotics of N

]E(Ng\M)) — K,,/\l_"ﬁ(en —d, SC)((Q/’) /\—%) + O()\l—nﬁ—%)

A—00

where k,:= volume of the n-dimensional unit-ball

Sketch of proof
> £(x, Py) 1= N(CM(x, Py))

E(N/(\M)) = A JeeBmor-9) E(&(x, Py))dvol M) (x)

» We require the uniformity of the two-term expansion of
E(&(x,Py)) with respect to x.



Variance asymptotics for NﬁM)

Var(Ng\M)) L koA~ o

where k,:= volume of the n-dimensional unit-ball

and oooi= EW(C)) + / Cov(N(CE)(x, Py U {x})), M(C{T))dx.

~ (MM —E(NM)) of order 1/ Var(N{™), i.e. A2(0-5)
must be negligible in front of the second term of E(N/(\M))' e \l-nB—2



Sketch of proof for the variance asymptotics

Var(N{M)

=E (Z €0, Pa) + D6 PaE(y m) —E(N{)?

x7#y
- )‘/ E(£2(x, Py U {x}))dvol™(x)
BM)(x,A=5)

1+ )2 // E(£(x, P U {x, yE(y, Pa U {x, y}))dvol ™ (x)dvol™(y)
B (x0,0-5)
— N2 // E(&(x, P U {XI)EE(y, Py U {y}))dvol ™ (x)dvol™(y)
BM)(xg,A=8)2
= /\/ E(£2(x, Py U {x}))dvol™)(x)
B(M)(Xo,A*Q)

X // Cov(&(x, Px U {x}), £(y, Pa U {y}))dvol™ (x)dvol™(y)
BM) (xg,A—8)?



Sketch of proof for the variance asymptotics

Question Limits of E(£2(x,Py)) and Cov(&(x, Py), E(y, Pa))?

» Application of the inverse of the exponential map at xp, then
1 . .
a rescaling by A» in the tangent space identified with R”

» Comparison of the obtained tessellation with an Euclidean
Poisson-Voronoi tessellation and convergence of the scores

» Each score has a localization radius R, i.e.
N (x, Py) = M (x, PAn BM(x, R))

where P{R > )\_%t} < ce e uniformly in x and A.



Central limit theorem for NﬁM

=<p<i
(M) _ (M)
Pupecs f (%T) t) —P(N(0,1) < )] < cAX1="D),
ar A

Sketch of proof

» F functional of Py with E(F) =0 and Var(F) =1
Estimate of dkx(F,N(0,1)) involving integrals of moments of
consecutive Malliavin derivatives of F where

DF = F(PxU{x}) = F(Px)

G. Last, G. Peccati & M. Schulte (2016)

» Uniform bounds for the moments of DXN/(\M) and Df’yN/(\M)



Estimation of SCE(Q/I)

0</3<%—%andn26

SN

= A 1 (M)
e Sca(xo) := 5~(en — N
Abo) =g (en ol ™ (BM) (3o A—8)) A )
is an asymptotically unbiased, consistent and normal estima-
£ ScM)
tor of Scy, .

~

2 3 M
e Sca(x) == i‘Tn(en - #(PmB(’Vl’)(xo,/\*B))Ni ))

is an asymptotically unbiased and consistent estimator of Sc%\/’).



Thank you for your attention!
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